Journal of Materials Science

, Volume 53, Issue 1, pp 100–123 | Cite as

Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review

Review

Abstract

Aliphatic nitrate esters are currently the most widely used energetic ingredients in single-, double-, and triple-base propellants. These nitrate esters are unstable at ambient conditions, and stabilizing agents should be incorporated into the energetic compositions to inhibit and slow down the decomposition reactions that can occur. However, the currently used stabilizers present a number of environmental and human health issues. To overcome these shortcomings, many stabilizers have been appeared in the past few decades and continue to be developed. Furthermore, several analytical techniques have been introduced to monitor the stability of nitrate ester-based energetic materials as well, since the existing ones could not be efficiently applied. Therefore, this review paper discusses and summarizes the current and emergent stabilizers as well as their mechanisms of action. A critical and analytical examination of their advantages and drawbacks is made.

Notes

Acknowledgements

The authors gratefully acknowledge the Ecole Militaire Polytechnique for the necessary facilities and encouragement for the accomplishment of this research.

References

  1. 1.
    Boddu V, Redner P (2010) Energetic materials: thermophysical properties, predictions, and experimental measurements. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Politzer P, Murray JS (2003) Energetic materials: part 1. Decomposition, crystal and molecular properties. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Agrawal JP (2010) High energy materials: propellants, explosives and pyrotechnics. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    Kubota N (2015) Propellants and explosives: thermochemical aspects of combustion. Wiley, New YorkCrossRefGoogle Scholar
  5. 5.
    Trache D, Maggi F, Palmucci I et al (2015) Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab J Chem. doi: 10.1016/j.arabjc.2015.11.016 Google Scholar
  6. 6.
    Mezroua A, Khimeche K, Lefebvre MH, Benziane M, Trache D (2014) The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants. J Therm Anal Calorim 116:279–286CrossRefGoogle Scholar
  7. 7.
    Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 16:919–931CrossRefGoogle Scholar
  8. 8.
    Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384:187–204CrossRefGoogle Scholar
  9. 9.
    Badgujar D, Talawar M, Asthana S, Mahulikar P (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305CrossRefGoogle Scholar
  10. 10.
    Olah GA, Squire DR (2012) Chemistry of energetic materials. Academic press, DordrechtGoogle Scholar
  11. 11.
    Talawar M, Sivabalan R, Mukundan T et al (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161:589–607CrossRefGoogle Scholar
  12. 12.
    Klapötke TM, Chapman RD (2015) Progress in the Area of High Energy Density Materials. 50 Years of Structure and Bonding—The Anniversary Volume. Springer, BerlinGoogle Scholar
  13. 13.
    Trache D, Khimeche K, Mezroua A, Benziane M (2016) Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim 124:1485–1496CrossRefGoogle Scholar
  14. 14.
    Tomaszewski W, Cieślak K, Zygmunt A (2015) Influence of processing solvents on decomposition of nitrocellulose in smokeless powders studied by heat flow calorimetry. Polym Degrad Stab 111:169–175CrossRefGoogle Scholar
  15. 15.
    WP de Klerk (2015) Assessment of stability of propellants and safe lifetimes. Propellants Explos Pyrotech 40:388–393CrossRefGoogle Scholar
  16. 16.
    Moniruzzaman M, Bellerby JM, Bohn MA (2014) Activation energies for the decomposition of nitrate ester groups at the anhydroglucopyranose ring positions C2, C3 and C6 of nitrocellulose using the nitration of a dye as probe. Polym Degrad Stab 102:49–58CrossRefGoogle Scholar
  17. 17.
    Trache D, Khimeche K (2013) Study on the influence of ageing on chemical and mechanical properties of N, N′-dimethyl-N, N′-diphenylcarbamide stabilized propellants. J Therm Anal Calorim 111:305–312CrossRefGoogle Scholar
  18. 18.
    Trache D, Mazroua A, Khimeche K (2011) Determination of chemical and mechanical properties of propellants during ageing. In: Proceedings of 42nd international annual conference of ICT, KarlsruheGoogle Scholar
  19. 19.
    Trache D, Khimeche K (2013) Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time. Fire Mater 37:328–336CrossRefGoogle Scholar
  20. 20.
    Zayed M, El-Begawy SE, Hassan HE (2017) Mechanism study of stabilization of double-base propellants by using zeolite stabilizers (nano-and micro-clinoptilolite). Arab J Chem 10:573–581CrossRefGoogle Scholar
  21. 21.
    Zayed M, El-Begawy SE, Hassan HE (2012) Enhancement of stabilizing properties of double-base propellants using nano-scale inorganic compounds. J Hazard Mater 227:274–279CrossRefGoogle Scholar
  22. 22.
    Zayed MA, Hassan MA (2010) Stability of non-isothermally treated double-base propellants containing different stabilizers in comparison with molecular orbital calculations. Propellants Explos Pyrotech 35:468–476CrossRefGoogle Scholar
  23. 23.
    Zayed M, Mohamed AA, Hassan M (2010) Stability studies of double-base propellants with centralite and malonanilide stabilizers using MO calculations in comparison to thermal studies. J Hazard Mater 179:453–461CrossRefGoogle Scholar
  24. 24.
    Zayed M, Soliman A-W, Hassan M (2000) Evaluation of malonanilides as new stabilizers for double-base propellants. (I). J Hazard Mater 73:237–244CrossRefGoogle Scholar
  25. 25.
    Tang Q, Fan X, Li J, Bi F, Fu X, Zhai L (2017) Experimental and theoretical studies on stability of new stabilizers for N-methyl-P-nitroaniline derivative in CMDB propellants. J Hazard Mater 327:187–196CrossRefGoogle Scholar
  26. 26.
    Lin C-P, Li J-S, Tseng J-M, Mannan MS (2016) Thermal runaway reaction for highly exothermic material in safe storage temperature. J Loss Prev Process Ind 40:259–265CrossRefGoogle Scholar
  27. 27.
    Fryš O, Bajerová P, Eisner A, Skládal J, Ventura K (2011) Utilization of new non-toxic substances as stabilizers for nitrocellulose-based propellants. Propellants Explos Pyrotech 36:347–355CrossRefGoogle Scholar
  28. 28.
    Fryš O, Bajerová P, Eisner A, Ventura K, Skladal J (2010) Analyses of new nontoxic stabilizers and other components in smokeless powders. Cent Eur J Energy Mater 7:253–267Google Scholar
  29. 29.
    Trache D, Khimeche K, Dahmani A (2013) Study of (solid–liquid) phase equilibria for mixtures of energetic material stabilizers and prediction for their subsequent performance. Int J Thermophys 34:226–239CrossRefGoogle Scholar
  30. 30.
    Vogelsanger B (2004) Chemical stability, compatibility and shelf life of explosives. Chimia 58:401–408CrossRefGoogle Scholar
  31. 31.
    Lindblom T (2002) Reactions in stabilizer and between stabilizer and nitrocellulose in propellants. Propellants Explos Pyrotech 27:197–208CrossRefGoogle Scholar
  32. 32.
    J Quinchon (1982) La fabrication et les propriétés des éxplosifs. ParisGoogle Scholar
  33. 33.
    Hassan M (2001) Effect of malonyl malonanilide dimers on the thermal stability of nitrocellulose. J Hazard Mater 88:33–49CrossRefGoogle Scholar
  34. 34.
    McGovern J (2009) Improved stability of double base propellants. Navy SBIR, New YorkGoogle Scholar
  35. 35.
    Gonzalez A, Shimm H (2001) Spheroidal propellant stabilizer studies. In: 19th international symposium of ballistics. InterlakenGoogle Scholar
  36. 36.
    Boers MN, de Klerk WWP (2005) Lifetime prediction of EC, DPA, akardite II and MNA stabilized triple base propellants, comparison of heat generation rate and stabilizer consumption. Propellants Explos Pyrotech 30:356–362CrossRefGoogle Scholar
  37. 37.
    de la Ossa MÁF, López-López M, Torre M, García-Ruiz C (2011) Analytical techniques in the study of highly-nitrated nitrocellulose. Trends Anal Chem 30:1740–1755CrossRefGoogle Scholar
  38. 38.
    Lindqvist S (2001) A tribute to the memory of Alfred Nobel: inventor, entrepreneur and industrialiste (1833–1896). SuedeGoogle Scholar
  39. 39.
    A Nobel (1889) Verfahren zur Darstellung von zu Schießpulver geeigneter Sprenggelatine. German Patent 51471Google Scholar
  40. 40.
    Drzyzga O (2003) Diphenylamine and derivatives in the environment: a review. Chemosphere 53:809–818CrossRefGoogle Scholar
  41. 41.
    Singh H, Gokhale H (2014) A new stability concept for propellants. Def Sci J 35:417–423CrossRefGoogle Scholar
  42. 42.
    Zeng J, Qi J, Bai F, Yu JCC, Shih W-C (2014) Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues. Analyst 139:4270–4278CrossRefGoogle Scholar
  43. 43.
    López-López M, García-Ruiz C (2014) Infrared and Raman spectroscopy techniques applied to identification of explosives. Trends Anal Chem 54:36–44CrossRefGoogle Scholar
  44. 44.
    Tabacof A, de Araújo Calado VM (2017) Thermogravimetric analysis and differential scanning calorimetry for investigating the stability of yellow smoke powders. J Therm Anal Calorim 128:387–398CrossRefGoogle Scholar
  45. 45.
    Heil M, Wimmer K, Bohn MA (2017) Characterization of gun propellants by long-term mass loss measurements. Propellants Explos Pyrotech 42:706–711. doi: 10.1002/prep.201700064 CrossRefGoogle Scholar
  46. 46.
    Błądek J, Cudziło S, Pietrzyk S, Wilker S (2010) A novel method for testing propellant stabilizers. Cent Eur J Energy Mater 7:281–287Google Scholar
  47. 47.
    Folly P, Mäder P (2004) Propellant chemistry. Chimia 58:374–382CrossRefGoogle Scholar
  48. 48.
    Lindblom T (2004) Reactions in the system nitro-cellulose/diphenylamine with special reference to the formation of a stabilizing product bonded to nitro-cellulose. Acta Universitatis Upsaliensis, UppsalaGoogle Scholar
  49. 49.
    Heppell-Masys KM, Ing M (2001) Effet des radiations gamma, des éléctrons et des neutrons sur la nitrocellulose. 26éme conférence étudiante annuelle de la SNC et de l’ANC. College Militaire Royal du Canada, TorontoGoogle Scholar
  50. 50.
    Druet L, Asselin M (1988) A review of stability test methods for gun and mortar propellants, I: the chemistry of propellant ageing. J Energy Mater 6:27–43CrossRefGoogle Scholar
  51. 51.
    Lurie B, Svetlov B, Chernyshov A (1992) Primary process of the nitrate esters thermal decomposition. In: 9th symposium on chemical problems connected with the stability of explosives, Margretetorp, SwedenGoogle Scholar
  52. 52.
    Bohn MA (2009) Prediction of in-service time period of three differently stabilized single base propellants. Propellants Explos Pyrotech 34:252–266CrossRefGoogle Scholar
  53. 53.
    Bohn MA (2007) NC-based energetic materials-stability, decomposition and ageing. Nitrocellulose–supply, ageing and characterization meetingGoogle Scholar
  54. 54.
    Bohn MA (2002) Kinetic description of mass loss data for the assessment of stability, compatibility and aging of energetic components and formulations exemplified with ε-CL20. Propellants Explos Pyrotech 27:125–135CrossRefGoogle Scholar
  55. 55.
    Chin A, Ellison DS, Poehlein SK, Ahn MK (2007) Investigation of the decomposition mechanism and thermal stability of nitrocellulose/nitroglycerine based propellants by electron spin resonance. Propellants Explos Pyrotech 32:117–126CrossRefGoogle Scholar
  56. 56.
    Kimura J (1989) Chemiluminescence study on thermal decomposition of nitrate esters (PETN and NC). Propellants Explos Pyrotech 14:89–92CrossRefGoogle Scholar
  57. 57.
    Kimura J (1988) Kinetic mechanism on thermal degradation of a nitrate ester propellant. Propellants Explos Pyrotech 13:8–12CrossRefGoogle Scholar
  58. 58.
    Gelernter G, Browning LC, Harris SR, Mason CM (1956) The slow thermal decomposition of cellulose nitrate. J Phys Chem 60:1260–1264CrossRefGoogle Scholar
  59. 59.
    Cunningham A, Heathcote C, Hillman D, Paul J, East RA, Woolwich U (1980) Gel permeation chromatography of nitrocellulose. Chromatogr Sci 13:173–196Google Scholar
  60. 60.
    Sovizi M, Hajimirsadeghi S, Naderizadeh B (2009) Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater 168:1134–1139CrossRefGoogle Scholar
  61. 61.
    Fathollahi M, Pourmortazavi S, Hosseini S (2004) The effect of the particle size of potassium chlorate in pyrotechnic compositions. Combust Flame 138:304–306CrossRefGoogle Scholar
  62. 62.
    J Akhavan (2004) The chemistry of explosives. Royal Society of Chemistry, Cornwall, UKGoogle Scholar
  63. 63.
    Sućeska M, Mušanić SM, Houra IF (2010) Kinetics and enthalpy of nitroglycerin evaporation from double base propellants by isothermal thermogravimetry. Thermochim Acta 510:9–16CrossRefGoogle Scholar
  64. 64.
    Mušanić SM, Sućeska M (2009) Artificial ageing of double base rocket propellant: effect on dynamic mechanical properties. J Therm Anal Calorim 96:523–529CrossRefGoogle Scholar
  65. 65.
    Bohn MA, Volk F (1992) Aging behavior of propellants investigated by heat generation, stabilizer consumption, and molar mass degradation. Propellants Explos Pyrotech 17:171–178CrossRefGoogle Scholar
  66. 66.
    Sorensen D, Knott D, Bell R (2007) Two-gram DTA as a thermal compatibility tool. J Therm Anal Calorim 91:305–309CrossRefGoogle Scholar
  67. 67.
    Bergens A, Danielsson R (1995) Decomposition of diphenylamine in nitrocellulose based propellants—I. Optimization of a numerical model to concentration-time data for diphenylamine and its primary degradation products determined by liquid chromatography with dual-amperometric detection. Talanta 42:171–183CrossRefGoogle Scholar
  68. 68.
    Druet L, Asselin M (1988) A review of stability test methods for gun and mortar propellants, II: stability testing and surveillance. J Energy Mater 6:215–254CrossRefGoogle Scholar
  69. 69.
    Guo S, Wang Q, Sun J, Liao X, Wang Z-s (2009) Study on the influence of moisture content on thermal stability of propellant. J Hazard Mater 168:536–541CrossRefGoogle Scholar
  70. 70.
    Coen E (2012) Investigation of alternative stabilisers for nitrocellulose gun propellants, pp. 199–259. The Defence Academy Year book, UKGoogle Scholar
  71. 71.
    Krumlinde P, Ek S, Tunestål E, Hafstrand A (2017) Synthesis and characterization of novel stabilizers for nitrocellulose-based propellants. Propellants Explos Pyrotech 42:78–83CrossRefGoogle Scholar
  72. 72.
    Fuchs R, Niehues M (2016) Stabilizer depletion in single base propellant from unexploded ordnance. Propellants Explos Pyrotech 41:688–699CrossRefGoogle Scholar
  73. 73.
    Ksiażczak A, Ksiażczak T (1998) Thermochemistry of the binary system nitrocellulose-s-diethyldiphenylurea. J Therm Anal Calorim 54:323–332CrossRefGoogle Scholar
  74. 74.
    Curtis N, Berry P (1989) Derivatives of ethyl centralite in Australian gun propellants. Propellants Explos Pyrotech 14:260–265CrossRefGoogle Scholar
  75. 75.
    Curtis N, Rogasch P (1987) Determination of derivatives of diphenylamine in australian gun propellants by high performance liquid chromatography. Propellants Explos Pyrotech 12:158–163CrossRefGoogle Scholar
  76. 76.
    Wilker S, Petrzilek J, Pantel G, Stottmeister L (2001) Stability analyses of spherical propellants in dependence of their stabilizer and nitroglycerin content. In: 12th Jan Hansson symposium on chemical problems connected with the stability of explosives. Karlsborg, SwedenGoogle Scholar
  77. 77.
    Liteplo R, Meek M (2001) N-nitrosodimethylamine: hazard characterization and exposure–response analysis. J Environ Sci Health C 19:281–304CrossRefGoogle Scholar
  78. 78.
    Roy R, Prabhakaran K, Kurian E (1999) X-ray diffraction, thermal and spectroscopic studies on 2, 4-dinitrodiphenylamine (DNDPA). Propellants Explos Pyrotech 24:54–58CrossRefGoogle Scholar
  79. 79.
    Asthana S, Deshpande B, Singh H (1989) Evaluation of various stabilizers for stability and increased life of CMDB propellants. Propellants Explos Pyrotech 14:170–175CrossRefGoogle Scholar
  80. 80.
    Bellamy A, Sammour M, Bellerby J (1993) Stabilizer Reactions in cast double base rocket propellants. Part IV: a comparison of some potential secondary stabilizers for use with the primary stabilizer 2-nitrodiphenylamine. Propellants Explos Pyrotech 18:223–229CrossRefGoogle Scholar
  81. 81.
    Sun Z-D, Fu X-L, Yu H-J, Fan X-Z, Ju X-H (2017) Theoretical study on stabilization mechanisms of nitrate esters using aromatic amines as stabilizers. J Hazard Mater. doi: 10.1016/j.jhazmat.2017.06.025 Google Scholar
  82. 82.
    Chan ML, Turner AD (2004) Insensitive high energy booster propellant. U.S. Patent and Trademark Office. WashingtonGoogle Scholar
  83. 83.
    Williams EM, Friedlander M (2000) Minimum smoke propellant composition. Google PatentsGoogle Scholar
  84. 84.
    We W, Chen C, Fu X, Ding C, Wang G (2017) The correlation between chemical stability and binder network structure in NEPE propellant. Propellants Explos Pyrotech 42:541–546CrossRefGoogle Scholar
  85. 85.
    Gibson JD (1995) Stabilizers for cross-linked composite modified double base propellants. U.S. Patent and Trademark Office. WashingtonGoogle Scholar
  86. 86.
    Strange KL (1981) JANNAF Propulsion Meeting (1981) Held at New Orleans, Louisiana on 26–28 May 1981, vol 1. DTIC DocumentGoogle Scholar
  87. 87.
    Ritter H, Braun S, Kaiser M, Becher C (2008) Stabilizer Degradation in propellants: identification of two isomeric forms of 2-Nitro-N-nitroso-N-ethylaniline. Propellants Explos Pyrotech 33:203–208CrossRefGoogle Scholar
  88. 88.
    Lussier LS, Bergeron E, Gagnon H (2006) Study of the daughter products of akardite-II. Propellants Explos Pyrotech 31:253–262CrossRefGoogle Scholar
  89. 89.
    Elliot M, Smith F, Fraser A (2000) Synthetic procedures yielding targeted nitro and nitroso derivatives of the propellant stabilisers diphenylamine, N-Methyl-4-nitroaniline, and N, N′-Diethyl-N, N′-diphenylurea. Propellants Explos Pyrotech 25:31–36CrossRefGoogle Scholar
  90. 90.
    Stucki H (2004) Toxicity and degradation of explosives. Chimia 58:409–413CrossRefGoogle Scholar
  91. 91.
    Davenas A (2012) Solid rocket propulsion technology. Pergamon Press Ltd, OxfordGoogle Scholar
  92. 92.
    Marqueyrol M (1928) Study of different stabilizers. Mem Poud 23:158Google Scholar
  93. 93.
    Wilker S, Heeb G, Vogelsanger B, Petržílek J, Skládal J (2007) Triphenylamine—a ‘new’ stabilizer for nitrocellulose based propellants-part I: chemical stability studies. Propellants Explos Pyrotech 32:135–148CrossRefGoogle Scholar
  94. 94.
    Soliman AAW, El-Damaty A, Awad W (1990) 2, 6-Diarylmethylene-thiazolo [3, 2-a] pyrimidine-3, 5, 7-triones as stabilizers for double-base propellant. Propellants Explos Pyrotech 15:248–249CrossRefGoogle Scholar
  95. 95.
    Soliman AAW, El-Damaty A (1984) 5-Phenyl-cyclohexane-1, 3-dione-4-carboxanilide as stabilizer for double base propellant. Propellants Explos Pyrotech 9:137–138CrossRefGoogle Scholar
  96. 96.
    Wilker S, Skladal J, Pantel G, Petrzilek J (2006) Stability analysis of propellants containing new stabilizers, part IV: are phenols a possible alternative to aromatic amines 37th International annual conference of ICT, Karlsruhe, GermanyGoogle Scholar
  97. 97.
    Hassan M, Shehata A (2002) Studies on some acrylamido polymers and copolymer as stabilizers for nitrocellulose. J Appl Polym Sci 85:2808–2819CrossRefGoogle Scholar
  98. 98.
    Forton M, Sims J, Askins R et al (2010) An ionic liquid-based next generation double base propellant stabilizer. In: 46th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibitGoogle Scholar
  99. 99.
    NATO Allied Ordnance Publication (NATO AOP) (2007) 48, edition 2, in near ratification, explosives, nitrocellulose-based propellants, stability test procedures and requirements using stabilizer depletion. Military Agency for Standardisation, NATO Headquarters, 1110 Brussels, BelgiumGoogle Scholar
  100. 100.
    Katoh K, Yoshino S, Kubota S et al (2007) The effects of conventional stabilizers and phenol compounds used as antioxidants on the stabilization of nitrocellulose. Propellants Explos Pyrotech 32:314–321CrossRefGoogle Scholar
  101. 101.
    Katoh K, Le L, Kumasaki M, Wada Y, Arai M, Tamura M (2005) Study on the spontaneous ignition mechanism of nitric esters (I). Thermochim Acta 431:161–167CrossRefGoogle Scholar
  102. 102.
    Gibson JD (1984) Urethane compounds and CMDB propellants stabilized therewith. U.S. Patent and Trademark Office. WashingtonGoogle Scholar
  103. 103.
    Kirschke EJ, Rothgery EF (1987) Hydrazine stabilizers for nc propellants. U.S. Patent and Trademark Office. WashingtonGoogle Scholar
  104. 104.
    Fryš O, Bajerová P, Eisner A, Mudruňková M, Ventura K (2011) Method validation for the determination of propellant components by Soxhlet extraction and gas chromatography/mass spectrometry. J Sep Sci 34:2405–2410CrossRefGoogle Scholar
  105. 105.
    Vennerstrom JL, Thomas HJ Jr (1987) Prostaglandin-H synthase inhibition by malonanilides. Ring-opened analogs of phenylbutazone. J Med Chem 30:434–437CrossRefGoogle Scholar
  106. 106.
    Rolf M, Neef R (1989) Neue hochechte pigmente. Dyes Pigments 5:189–207CrossRefGoogle Scholar
  107. 107.
    Waisser K, Odlerova Z, Gruenert R (1989) Antitubercular agents. 43. A new group of potential antitubercular agents—oxalanilides and malonanilides. Pharmazie 44:162–163Google Scholar
  108. 108.
    Chandler AD (2009) Shaping the industrial century: the remarkable story of the evolution of the modern chemical and pharmaceutical industries. Harvard University Press, CambridgeGoogle Scholar
  109. 109.
    Hansen R, De Benedictis T, Martin W (1965) Stabilization of polypropylene. Polym Eng Sci 5:223–226CrossRefGoogle Scholar
  110. 110.
    Bushnell DM (1995) Hypervelocity scramjet mixing enhancement. J Propuls Power 11:1088–1090CrossRefGoogle Scholar
  111. 111.
    Yan Q-L, Li X-J, Wang Y, Zhang W-H, Zhao F-Q (2009) Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (I): the effect of heat and mass transfer to the burning characteristics. Combust Flame 156:633–641CrossRefGoogle Scholar
  112. 112.
    Shehata A, Hassan M (2002) Poly N-(4-chlorophenyl), poly N-(4-methylphenyl) acrylamides and the copolymer of their monomers as stabilizers for nitrocellulose. Polym Degrad Stab 77:355–370CrossRefGoogle Scholar
  113. 113.
    Shehata A, Hassan M, Nour M (2003) Effect of new poly 2-acryloyl-N, N′-bis (4-nitrophenyl) propandiamide and poly 2-acryloyl-N, N′-bis (4-methylphenyl) propandiamide and their synergistic action on the stability of nitrocellulose. J Hazard Mater 102:121–136CrossRefGoogle Scholar
  114. 114.
    Ho CH, Tomkins B, Ramsey R, Griest W, Counts RW (1996) Determination of nitroester and stabilizer migration in combustible cartridge case wall. Propellants Explos Pyrotech 21:79–84CrossRefGoogle Scholar
  115. 115.
    Lindblom T (2004) Reactions in the system nitro-cellulose/diphenylamine with special reference to the formation of a stabilizing product bonded to nitro-cellulose. Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, Acta Universitatis UpsaliensisGoogle Scholar
  116. 116.
    Perraki T, Orfanoudaki A (2004) Mineralogical study of zeolites from Pentalofos area, Thrace, Greece. Appl Clay Sci 25:9–16CrossRefGoogle Scholar
  117. 117.
    Alietti A, Brigatti M, Poppi L (1977) Natural Ca-rich clinoptilolites (heulandites of group 3): new data and review. N Jb Miner Mh 1977:493–501Google Scholar
  118. 118.
    Batonneau Y, Kappenstein CJ, Keim W (2008) Catalytic decomposition of energetic compounds: gas generators and propulsion. In: Handbook of heterogeneous catalysis, vol 12, p. 2647–2676Google Scholar
  119. 119.
    Singh RP, Verma RD, Meshri DT, Shreeve J (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45:3584–3601CrossRefGoogle Scholar
  120. 120.
    Smiglak M, Metlen A, Rogers RD (2007) The second evolution of ionic liquids: from solvents and separations to advanced materials energetic examples from the ionic liquid cookbook. Acc Chem Res 40:1182–1192CrossRefGoogle Scholar
  121. 121.
    Chiu Y-h, Dressler RA (2007) Ionic liquids for space propulsion. In: ACS symposium seriesGoogle Scholar
  122. 122.
    Lussier L-S, Gagnon H (1996) Development of modern methods for determination of stabilizers in propellants. Defence Research Establishment Valcartier (QUEBEC)Google Scholar
  123. 123.
    Mekki A, Khimeche K, Dahmani A (2010) Measurement and prediction of (solid + liquid) equilibria of gun powder’s and propellant’s stabilizers mixtures. J Chem Thermodyn 42:1050–1055CrossRefGoogle Scholar
  124. 124.
    Trache D, Khimeche K, Benziane M, Dahmani A (2013) Solid–liquid phase equilibria for binary mixtures of propellant’s stabilizers. J Therm Anal Calorim 112:215–222CrossRefGoogle Scholar
  125. 125.
    Trache D, Khimeche K, Benelmir R, Dahmani A (2013) DSC measurement and prediction of phase diagrams for binary mixtures of energetic materials’ stabilizers. Thermochim Acta 565:8–16CrossRefGoogle Scholar
  126. 126.
    Quinchon J, Tranchant J, Nicolas M (1986) Les Poudres pour armes. ParisGoogle Scholar
  127. 127.
    Lide DRH, Mickey W (2009) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC, Boca RatonGoogle Scholar
  128. 128.
    Curtis N (1987) Syntheses and characterisations of derivatives of ethyl centralite. Weapons systems research laboratory, Salisbury, South Australia. Technical report WSRL-0563-TRGoogle Scholar
  129. 129.
    Volk F (1976) Determination of the lifetimes of gun propellants using thin-layer chromatography. Propellants Explos Pyrotech 1:90–97CrossRefGoogle Scholar
  130. 130.
    Schroeder W, Keilin B, Lemmon RM (1951) Chromatographic investigations of smokeless powder. Derivatives of acardite, carbazole, and triphenylamine formed in double-base powder during accelerated aging. Ind Eng Chem 43:939–946CrossRefGoogle Scholar
  131. 131.
    Quinchon J, Tranchant J (1984) Poudres, propergols et explosifs-La nitrocellulose et autres matieres de base des poudres et propergols. Tech Doc 2Google Scholar
  132. 132.
    Mackay D, Shiu W-Y, Ma K-C, Lee SC (2006) Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC Press, Boca RatonGoogle Scholar
  133. 133.
    Baum E (1997) Chemical property estimation: theory and application. CRC Press, Boca RatonGoogle Scholar
  134. 134.
    Acree WE (1991) Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation. Thermochim Acta 189:37–56CrossRefGoogle Scholar
  135. 135.
    Witschonke C (1954) Freezing point and purity data for some organic compounds. Anal Chem 26:562–564CrossRefGoogle Scholar
  136. 136.
    Curtis NJ (1986) Methods for the syntheses of mono-, di-, tri-and tetranitro derivatives of diphenylamine. Weapons Systems Research Laboratory, SalisburyGoogle Scholar
  137. 137.
    Meyer R, Köhler J, Homburg A (2007) Explosives. Wiley-VCH Verlag, WeinheimCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.UER Procédés EnergétiquesEcole Militaire PolytechniqueBordj El-Bahri, AlgiersAlgeria

Personalised recommendations