Skip to main content
Log in

Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aliphatic nitrate esters are currently the most widely used energetic ingredients in single-, double-, and triple-base propellants. These nitrate esters are unstable at ambient conditions, and stabilizing agents should be incorporated into the energetic compositions to inhibit and slow down the decomposition reactions that can occur. However, the currently used stabilizers present a number of environmental and human health issues. To overcome these shortcomings, many stabilizers have been appeared in the past few decades and continue to be developed. Furthermore, several analytical techniques have been introduced to monitor the stability of nitrate ester-based energetic materials as well, since the existing ones could not be efficiently applied. Therefore, this review paper discusses and summarizes the current and emergent stabilizers as well as their mechanisms of action. A critical and analytical examination of their advantages and drawbacks is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Boddu V, Redner P (2010) Energetic materials: thermophysical properties, predictions, and experimental measurements. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Politzer P, Murray JS (2003) Energetic materials: part 1. Decomposition, crystal and molecular properties. Elsevier, Amsterdam

    Google Scholar 

  3. Agrawal JP (2010) High energy materials: propellants, explosives and pyrotechnics. Wiley, New York

    Book  Google Scholar 

  4. Kubota N (2015) Propellants and explosives: thermochemical aspects of combustion. Wiley, New York

    Book  Google Scholar 

  5. Trache D, Maggi F, Palmucci I et al (2015) Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab J Chem. doi:10.1016/j.arabjc.2015.11.016

    Google Scholar 

  6. Mezroua A, Khimeche K, Lefebvre MH, Benziane M, Trache D (2014) The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants. J Therm Anal Calorim 116:279–286

    Article  Google Scholar 

  7. Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 16:919–931

    Article  Google Scholar 

  8. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384:187–204

    Article  Google Scholar 

  9. Badgujar D, Talawar M, Asthana S, Mahulikar P (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305

    Article  Google Scholar 

  10. Olah GA, Squire DR (2012) Chemistry of energetic materials. Academic press, Dordrecht

    Google Scholar 

  11. Talawar M, Sivabalan R, Mukundan T et al (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161:589–607

    Article  Google Scholar 

  12. Klapötke TM, Chapman RD (2015) Progress in the Area of High Energy Density Materials. 50 Years of Structure and Bonding—The Anniversary Volume. Springer, Berlin

    Google Scholar 

  13. Trache D, Khimeche K, Mezroua A, Benziane M (2016) Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim 124:1485–1496

    Article  Google Scholar 

  14. Tomaszewski W, Cieślak K, Zygmunt A (2015) Influence of processing solvents on decomposition of nitrocellulose in smokeless powders studied by heat flow calorimetry. Polym Degrad Stab 111:169–175

    Article  Google Scholar 

  15. WP de Klerk (2015) Assessment of stability of propellants and safe lifetimes. Propellants Explos Pyrotech 40:388–393

    Article  Google Scholar 

  16. Moniruzzaman M, Bellerby JM, Bohn MA (2014) Activation energies for the decomposition of nitrate ester groups at the anhydroglucopyranose ring positions C2, C3 and C6 of nitrocellulose using the nitration of a dye as probe. Polym Degrad Stab 102:49–58

    Article  Google Scholar 

  17. Trache D, Khimeche K (2013) Study on the influence of ageing on chemical and mechanical properties of N, N′-dimethyl-N, N′-diphenylcarbamide stabilized propellants. J Therm Anal Calorim 111:305–312

    Article  Google Scholar 

  18. Trache D, Mazroua A, Khimeche K (2011) Determination of chemical and mechanical properties of propellants during ageing. In: Proceedings of 42nd international annual conference of ICT, Karlsruhe

  19. Trache D, Khimeche K (2013) Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time. Fire Mater 37:328–336

    Article  Google Scholar 

  20. Zayed M, El-Begawy SE, Hassan HE (2017) Mechanism study of stabilization of double-base propellants by using zeolite stabilizers (nano-and micro-clinoptilolite). Arab J Chem 10:573–581

    Article  Google Scholar 

  21. Zayed M, El-Begawy SE, Hassan HE (2012) Enhancement of stabilizing properties of double-base propellants using nano-scale inorganic compounds. J Hazard Mater 227:274–279

    Article  Google Scholar 

  22. Zayed MA, Hassan MA (2010) Stability of non-isothermally treated double-base propellants containing different stabilizers in comparison with molecular orbital calculations. Propellants Explos Pyrotech 35:468–476

    Article  Google Scholar 

  23. Zayed M, Mohamed AA, Hassan M (2010) Stability studies of double-base propellants with centralite and malonanilide stabilizers using MO calculations in comparison to thermal studies. J Hazard Mater 179:453–461

    Article  Google Scholar 

  24. Zayed M, Soliman A-W, Hassan M (2000) Evaluation of malonanilides as new stabilizers for double-base propellants. (I). J Hazard Mater 73:237–244

    Article  Google Scholar 

  25. Tang Q, Fan X, Li J, Bi F, Fu X, Zhai L (2017) Experimental and theoretical studies on stability of new stabilizers for N-methyl-P-nitroaniline derivative in CMDB propellants. J Hazard Mater 327:187–196

    Article  Google Scholar 

  26. Lin C-P, Li J-S, Tseng J-M, Mannan MS (2016) Thermal runaway reaction for highly exothermic material in safe storage temperature. J Loss Prev Process Ind 40:259–265

    Article  Google Scholar 

  27. Fryš O, Bajerová P, Eisner A, Skládal J, Ventura K (2011) Utilization of new non-toxic substances as stabilizers for nitrocellulose-based propellants. Propellants Explos Pyrotech 36:347–355

    Article  Google Scholar 

  28. Fryš O, Bajerová P, Eisner A, Ventura K, Skladal J (2010) Analyses of new nontoxic stabilizers and other components in smokeless powders. Cent Eur J Energy Mater 7:253–267

    Google Scholar 

  29. Trache D, Khimeche K, Dahmani A (2013) Study of (solid–liquid) phase equilibria for mixtures of energetic material stabilizers and prediction for their subsequent performance. Int J Thermophys 34:226–239

    Article  Google Scholar 

  30. Vogelsanger B (2004) Chemical stability, compatibility and shelf life of explosives. Chimia 58:401–408

    Article  Google Scholar 

  31. Lindblom T (2002) Reactions in stabilizer and between stabilizer and nitrocellulose in propellants. Propellants Explos Pyrotech 27:197–208

    Article  Google Scholar 

  32. J Quinchon (1982) La fabrication et les propriétés des éxplosifs. Paris

  33. Hassan M (2001) Effect of malonyl malonanilide dimers on the thermal stability of nitrocellulose. J Hazard Mater 88:33–49

    Article  Google Scholar 

  34. McGovern J (2009) Improved stability of double base propellants. Navy SBIR, New York

    Google Scholar 

  35. Gonzalez A, Shimm H (2001) Spheroidal propellant stabilizer studies. In: 19th international symposium of ballistics. Interlaken

  36. Boers MN, de Klerk WWP (2005) Lifetime prediction of EC, DPA, akardite II and MNA stabilized triple base propellants, comparison of heat generation rate and stabilizer consumption. Propellants Explos Pyrotech 30:356–362

    Article  Google Scholar 

  37. de la Ossa MÁF, López-López M, Torre M, García-Ruiz C (2011) Analytical techniques in the study of highly-nitrated nitrocellulose. Trends Anal Chem 30:1740–1755

    Article  Google Scholar 

  38. Lindqvist S (2001) A tribute to the memory of Alfred Nobel: inventor, entrepreneur and industrialiste (1833–1896). Suede

  39. A Nobel (1889) Verfahren zur Darstellung von zu Schießpulver geeigneter Sprenggelatine. German Patent 51471

  40. Drzyzga O (2003) Diphenylamine and derivatives in the environment: a review. Chemosphere 53:809–818

    Article  Google Scholar 

  41. Singh H, Gokhale H (2014) A new stability concept for propellants. Def Sci J 35:417–423

    Article  Google Scholar 

  42. Zeng J, Qi J, Bai F, Yu JCC, Shih W-C (2014) Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues. Analyst 139:4270–4278

    Article  Google Scholar 

  43. López-López M, García-Ruiz C (2014) Infrared and Raman spectroscopy techniques applied to identification of explosives. Trends Anal Chem 54:36–44

    Article  Google Scholar 

  44. Tabacof A, de Araújo Calado VM (2017) Thermogravimetric analysis and differential scanning calorimetry for investigating the stability of yellow smoke powders. J Therm Anal Calorim 128:387–398

    Article  Google Scholar 

  45. Heil M, Wimmer K, Bohn MA (2017) Characterization of gun propellants by long-term mass loss measurements. Propellants Explos Pyrotech 42:706–711. doi:10.1002/prep.201700064

    Article  Google Scholar 

  46. Błądek J, Cudziło S, Pietrzyk S, Wilker S (2010) A novel method for testing propellant stabilizers. Cent Eur J Energy Mater 7:281–287

    Google Scholar 

  47. Folly P, Mäder P (2004) Propellant chemistry. Chimia 58:374–382

    Article  Google Scholar 

  48. Lindblom T (2004) Reactions in the system nitro-cellulose/diphenylamine with special reference to the formation of a stabilizing product bonded to nitro-cellulose. Acta Universitatis Upsaliensis, Uppsala

    Google Scholar 

  49. Heppell-Masys KM, Ing M (2001) Effet des radiations gamma, des éléctrons et des neutrons sur la nitrocellulose. 26éme conférence étudiante annuelle de la SNC et de l’ANC. College Militaire Royal du Canada, Toronto

  50. Druet L, Asselin M (1988) A review of stability test methods for gun and mortar propellants, I: the chemistry of propellant ageing. J Energy Mater 6:27–43

    Article  Google Scholar 

  51. Lurie B, Svetlov B, Chernyshov A (1992) Primary process of the nitrate esters thermal decomposition. In: 9th symposium on chemical problems connected with the stability of explosives, Margretetorp, Sweden

  52. Bohn MA (2009) Prediction of in-service time period of three differently stabilized single base propellants. Propellants Explos Pyrotech 34:252–266

    Article  Google Scholar 

  53. Bohn MA (2007) NC-based energetic materials-stability, decomposition and ageing. Nitrocellulose–supply, ageing and characterization meeting

  54. Bohn MA (2002) Kinetic description of mass loss data for the assessment of stability, compatibility and aging of energetic components and formulations exemplified with ε-CL20. Propellants Explos Pyrotech 27:125–135

    Article  Google Scholar 

  55. Chin A, Ellison DS, Poehlein SK, Ahn MK (2007) Investigation of the decomposition mechanism and thermal stability of nitrocellulose/nitroglycerine based propellants by electron spin resonance. Propellants Explos Pyrotech 32:117–126

    Article  Google Scholar 

  56. Kimura J (1989) Chemiluminescence study on thermal decomposition of nitrate esters (PETN and NC). Propellants Explos Pyrotech 14:89–92

    Article  Google Scholar 

  57. Kimura J (1988) Kinetic mechanism on thermal degradation of a nitrate ester propellant. Propellants Explos Pyrotech 13:8–12

    Article  Google Scholar 

  58. Gelernter G, Browning LC, Harris SR, Mason CM (1956) The slow thermal decomposition of cellulose nitrate. J Phys Chem 60:1260–1264

    Article  Google Scholar 

  59. Cunningham A, Heathcote C, Hillman D, Paul J, East RA, Woolwich U (1980) Gel permeation chromatography of nitrocellulose. Chromatogr Sci 13:173–196

    Google Scholar 

  60. Sovizi M, Hajimirsadeghi S, Naderizadeh B (2009) Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater 168:1134–1139

    Article  Google Scholar 

  61. Fathollahi M, Pourmortazavi S, Hosseini S (2004) The effect of the particle size of potassium chlorate in pyrotechnic compositions. Combust Flame 138:304–306

    Article  Google Scholar 

  62. J Akhavan (2004) The chemistry of explosives. Royal Society of Chemistry, Cornwall, UK

    Google Scholar 

  63. Sućeska M, Mušanić SM, Houra IF (2010) Kinetics and enthalpy of nitroglycerin evaporation from double base propellants by isothermal thermogravimetry. Thermochim Acta 510:9–16

    Article  Google Scholar 

  64. Mušanić SM, Sućeska M (2009) Artificial ageing of double base rocket propellant: effect on dynamic mechanical properties. J Therm Anal Calorim 96:523–529

    Article  Google Scholar 

  65. Bohn MA, Volk F (1992) Aging behavior of propellants investigated by heat generation, stabilizer consumption, and molar mass degradation. Propellants Explos Pyrotech 17:171–178

    Article  Google Scholar 

  66. Sorensen D, Knott D, Bell R (2007) Two-gram DTA as a thermal compatibility tool. J Therm Anal Calorim 91:305–309

    Article  Google Scholar 

  67. Bergens A, Danielsson R (1995) Decomposition of diphenylamine in nitrocellulose based propellants—I. Optimization of a numerical model to concentration-time data for diphenylamine and its primary degradation products determined by liquid chromatography with dual-amperometric detection. Talanta 42:171–183

    Article  Google Scholar 

  68. Druet L, Asselin M (1988) A review of stability test methods for gun and mortar propellants, II: stability testing and surveillance. J Energy Mater 6:215–254

    Article  Google Scholar 

  69. Guo S, Wang Q, Sun J, Liao X, Wang Z-s (2009) Study on the influence of moisture content on thermal stability of propellant. J Hazard Mater 168:536–541

    Article  Google Scholar 

  70. Coen E (2012) Investigation of alternative stabilisers for nitrocellulose gun propellants, pp. 199–259. The Defence Academy Year book, UK

    Google Scholar 

  71. Krumlinde P, Ek S, Tunestål E, Hafstrand A (2017) Synthesis and characterization of novel stabilizers for nitrocellulose-based propellants. Propellants Explos Pyrotech 42:78–83

    Article  Google Scholar 

  72. Fuchs R, Niehues M (2016) Stabilizer depletion in single base propellant from unexploded ordnance. Propellants Explos Pyrotech 41:688–699

    Article  Google Scholar 

  73. Ksiażczak A, Ksiażczak T (1998) Thermochemistry of the binary system nitrocellulose-s-diethyldiphenylurea. J Therm Anal Calorim 54:323–332

    Article  Google Scholar 

  74. Curtis N, Berry P (1989) Derivatives of ethyl centralite in Australian gun propellants. Propellants Explos Pyrotech 14:260–265

    Article  Google Scholar 

  75. Curtis N, Rogasch P (1987) Determination of derivatives of diphenylamine in australian gun propellants by high performance liquid chromatography. Propellants Explos Pyrotech 12:158–163

    Article  Google Scholar 

  76. Wilker S, Petrzilek J, Pantel G, Stottmeister L (2001) Stability analyses of spherical propellants in dependence of their stabilizer and nitroglycerin content. In: 12th Jan Hansson symposium on chemical problems connected with the stability of explosives. Karlsborg, Sweden

  77. Liteplo R, Meek M (2001) N-nitrosodimethylamine: hazard characterization and exposure–response analysis. J Environ Sci Health C 19:281–304

    Article  Google Scholar 

  78. Roy R, Prabhakaran K, Kurian E (1999) X-ray diffraction, thermal and spectroscopic studies on 2, 4-dinitrodiphenylamine (DNDPA). Propellants Explos Pyrotech 24:54–58

    Article  Google Scholar 

  79. Asthana S, Deshpande B, Singh H (1989) Evaluation of various stabilizers for stability and increased life of CMDB propellants. Propellants Explos Pyrotech 14:170–175

    Article  Google Scholar 

  80. Bellamy A, Sammour M, Bellerby J (1993) Stabilizer Reactions in cast double base rocket propellants. Part IV: a comparison of some potential secondary stabilizers for use with the primary stabilizer 2-nitrodiphenylamine. Propellants Explos Pyrotech 18:223–229

    Article  Google Scholar 

  81. Sun Z-D, Fu X-L, Yu H-J, Fan X-Z, Ju X-H (2017) Theoretical study on stabilization mechanisms of nitrate esters using aromatic amines as stabilizers. J Hazard Mater. doi:10.1016/j.jhazmat.2017.06.025

    Google Scholar 

  82. Chan ML, Turner AD (2004) Insensitive high energy booster propellant. U.S. Patent and Trademark Office. Washington

  83. Williams EM, Friedlander M (2000) Minimum smoke propellant composition. Google Patents

  84. We W, Chen C, Fu X, Ding C, Wang G (2017) The correlation between chemical stability and binder network structure in NEPE propellant. Propellants Explos Pyrotech 42:541–546

    Article  Google Scholar 

  85. Gibson JD (1995) Stabilizers for cross-linked composite modified double base propellants. U.S. Patent and Trademark Office. Washington

  86. Strange KL (1981) JANNAF Propulsion Meeting (1981) Held at New Orleans, Louisiana on 26–28 May 1981, vol 1. DTIC Document

  87. Ritter H, Braun S, Kaiser M, Becher C (2008) Stabilizer Degradation in propellants: identification of two isomeric forms of 2-Nitro-N-nitroso-N-ethylaniline. Propellants Explos Pyrotech 33:203–208

    Article  Google Scholar 

  88. Lussier LS, Bergeron E, Gagnon H (2006) Study of the daughter products of akardite-II. Propellants Explos Pyrotech 31:253–262

    Article  Google Scholar 

  89. Elliot M, Smith F, Fraser A (2000) Synthetic procedures yielding targeted nitro and nitroso derivatives of the propellant stabilisers diphenylamine, N-Methyl-4-nitroaniline, and N, N′-Diethyl-N, N′-diphenylurea. Propellants Explos Pyrotech 25:31–36

    Article  Google Scholar 

  90. Stucki H (2004) Toxicity and degradation of explosives. Chimia 58:409–413

    Article  Google Scholar 

  91. Davenas A (2012) Solid rocket propulsion technology. Pergamon Press Ltd, Oxford

    Google Scholar 

  92. Marqueyrol M (1928) Study of different stabilizers. Mem Poud 23:158

    Google Scholar 

  93. Wilker S, Heeb G, Vogelsanger B, Petržílek J, Skládal J (2007) Triphenylamine—a ‘new’ stabilizer for nitrocellulose based propellants-part I: chemical stability studies. Propellants Explos Pyrotech 32:135–148

    Article  Google Scholar 

  94. Soliman AAW, El-Damaty A, Awad W (1990) 2, 6-Diarylmethylene-thiazolo [3, 2-a] pyrimidine-3, 5, 7-triones as stabilizers for double-base propellant. Propellants Explos Pyrotech 15:248–249

    Article  Google Scholar 

  95. Soliman AAW, El-Damaty A (1984) 5-Phenyl-cyclohexane-1, 3-dione-4-carboxanilide as stabilizer for double base propellant. Propellants Explos Pyrotech 9:137–138

    Article  Google Scholar 

  96. Wilker S, Skladal J, Pantel G, Petrzilek J (2006) Stability analysis of propellants containing new stabilizers, part IV: are phenols a possible alternative to aromatic amines 37th International annual conference of ICT, Karlsruhe, Germany

  97. Hassan M, Shehata A (2002) Studies on some acrylamido polymers and copolymer as stabilizers for nitrocellulose. J Appl Polym Sci 85:2808–2819

    Article  Google Scholar 

  98. Forton M, Sims J, Askins R et al (2010) An ionic liquid-based next generation double base propellant stabilizer. In: 46th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit

  99. NATO Allied Ordnance Publication (NATO AOP) (2007) 48, edition 2, in near ratification, explosives, nitrocellulose-based propellants, stability test procedures and requirements using stabilizer depletion. Military Agency for Standardisation, NATO Headquarters, 1110 Brussels, Belgium

  100. Katoh K, Yoshino S, Kubota S et al (2007) The effects of conventional stabilizers and phenol compounds used as antioxidants on the stabilization of nitrocellulose. Propellants Explos Pyrotech 32:314–321

    Article  Google Scholar 

  101. Katoh K, Le L, Kumasaki M, Wada Y, Arai M, Tamura M (2005) Study on the spontaneous ignition mechanism of nitric esters (I). Thermochim Acta 431:161–167

    Article  Google Scholar 

  102. Gibson JD (1984) Urethane compounds and CMDB propellants stabilized therewith. U.S. Patent and Trademark Office. Washington

  103. Kirschke EJ, Rothgery EF (1987) Hydrazine stabilizers for nc propellants. U.S. Patent and Trademark Office. Washington

  104. Fryš O, Bajerová P, Eisner A, Mudruňková M, Ventura K (2011) Method validation for the determination of propellant components by Soxhlet extraction and gas chromatography/mass spectrometry. J Sep Sci 34:2405–2410

    Article  Google Scholar 

  105. Vennerstrom JL, Thomas HJ Jr (1987) Prostaglandin-H synthase inhibition by malonanilides. Ring-opened analogs of phenylbutazone. J Med Chem 30:434–437

    Article  Google Scholar 

  106. Rolf M, Neef R (1989) Neue hochechte pigmente. Dyes Pigments 5:189–207

    Article  Google Scholar 

  107. Waisser K, Odlerova Z, Gruenert R (1989) Antitubercular agents. 43. A new group of potential antitubercular agents—oxalanilides and malonanilides. Pharmazie 44:162–163

    Google Scholar 

  108. Chandler AD (2009) Shaping the industrial century: the remarkable story of the evolution of the modern chemical and pharmaceutical industries. Harvard University Press, Cambridge

    Google Scholar 

  109. Hansen R, De Benedictis T, Martin W (1965) Stabilization of polypropylene. Polym Eng Sci 5:223–226

    Article  Google Scholar 

  110. Bushnell DM (1995) Hypervelocity scramjet mixing enhancement. J Propuls Power 11:1088–1090

    Article  Google Scholar 

  111. Yan Q-L, Li X-J, Wang Y, Zhang W-H, Zhao F-Q (2009) Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (I): the effect of heat and mass transfer to the burning characteristics. Combust Flame 156:633–641

    Article  Google Scholar 

  112. Shehata A, Hassan M (2002) Poly N-(4-chlorophenyl), poly N-(4-methylphenyl) acrylamides and the copolymer of their monomers as stabilizers for nitrocellulose. Polym Degrad Stab 77:355–370

    Article  Google Scholar 

  113. Shehata A, Hassan M, Nour M (2003) Effect of new poly 2-acryloyl-N, N′-bis (4-nitrophenyl) propandiamide and poly 2-acryloyl-N, N′-bis (4-methylphenyl) propandiamide and their synergistic action on the stability of nitrocellulose. J Hazard Mater 102:121–136

    Article  Google Scholar 

  114. Ho CH, Tomkins B, Ramsey R, Griest W, Counts RW (1996) Determination of nitroester and stabilizer migration in combustible cartridge case wall. Propellants Explos Pyrotech 21:79–84

    Article  Google Scholar 

  115. Lindblom T (2004) Reactions in the system nitro-cellulose/diphenylamine with special reference to the formation of a stabilizing product bonded to nitro-cellulose. Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, Acta Universitatis Upsaliensis

  116. Perraki T, Orfanoudaki A (2004) Mineralogical study of zeolites from Pentalofos area, Thrace, Greece. Appl Clay Sci 25:9–16

    Article  Google Scholar 

  117. Alietti A, Brigatti M, Poppi L (1977) Natural Ca-rich clinoptilolites (heulandites of group 3): new data and review. N Jb Miner Mh 1977:493–501

    Google Scholar 

  118. Batonneau Y, Kappenstein CJ, Keim W (2008) Catalytic decomposition of energetic compounds: gas generators and propulsion. In: Handbook of heterogeneous catalysis, vol 12, p. 2647–2676

  119. Singh RP, Verma RD, Meshri DT, Shreeve J (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45:3584–3601

    Article  Google Scholar 

  120. Smiglak M, Metlen A, Rogers RD (2007) The second evolution of ionic liquids: from solvents and separations to advanced materials energetic examples from the ionic liquid cookbook. Acc Chem Res 40:1182–1192

    Article  Google Scholar 

  121. Chiu Y-h, Dressler RA (2007) Ionic liquids for space propulsion. In: ACS symposium series

  122. Lussier L-S, Gagnon H (1996) Development of modern methods for determination of stabilizers in propellants. Defence Research Establishment Valcartier (QUEBEC)

  123. Mekki A, Khimeche K, Dahmani A (2010) Measurement and prediction of (solid + liquid) equilibria of gun powder’s and propellant’s stabilizers mixtures. J Chem Thermodyn 42:1050–1055

    Article  Google Scholar 

  124. Trache D, Khimeche K, Benziane M, Dahmani A (2013) Solid–liquid phase equilibria for binary mixtures of propellant’s stabilizers. J Therm Anal Calorim 112:215–222

    Article  Google Scholar 

  125. Trache D, Khimeche K, Benelmir R, Dahmani A (2013) DSC measurement and prediction of phase diagrams for binary mixtures of energetic materials’ stabilizers. Thermochim Acta 565:8–16

    Article  Google Scholar 

  126. Quinchon J, Tranchant J, Nicolas M (1986) Les Poudres pour armes. Paris

  127. Lide DRH, Mickey W (2009) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC, Boca Raton

    Google Scholar 

  128. Curtis N (1987) Syntheses and characterisations of derivatives of ethyl centralite. Weapons systems research laboratory, Salisbury, South Australia. Technical report WSRL-0563-TR

  129. Volk F (1976) Determination of the lifetimes of gun propellants using thin-layer chromatography. Propellants Explos Pyrotech 1:90–97

    Article  Google Scholar 

  130. Schroeder W, Keilin B, Lemmon RM (1951) Chromatographic investigations of smokeless powder. Derivatives of acardite, carbazole, and triphenylamine formed in double-base powder during accelerated aging. Ind Eng Chem 43:939–946

    Article  Google Scholar 

  131. Quinchon J, Tranchant J (1984) Poudres, propergols et explosifs-La nitrocellulose et autres matieres de base des poudres et propergols. Tech Doc 2

  132. Mackay D, Shiu W-Y, Ma K-C, Lee SC (2006) Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC Press, Boca Raton

    Google Scholar 

  133. Baum E (1997) Chemical property estimation: theory and application. CRC Press, Boca Raton

    Google Scholar 

  134. Acree WE (1991) Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation. Thermochim Acta 189:37–56

    Article  Google Scholar 

  135. Witschonke C (1954) Freezing point and purity data for some organic compounds. Anal Chem 26:562–564

    Article  Google Scholar 

  136. Curtis NJ (1986) Methods for the syntheses of mono-, di-, tri-and tetranitro derivatives of diphenylamine. Weapons Systems Research Laboratory, Salisbury

    Google Scholar 

  137. Meyer R, Köhler J, Homburg A (2007) Explosives. Wiley-VCH Verlag, Weinheim

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ecole Militaire Polytechnique for the necessary facilities and encouragement for the accomplishment of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalal Trache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trache, D., Tarchoun, A.F. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J Mater Sci 53, 100–123 (2018). https://doi.org/10.1007/s10853-017-1474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1474-y

Keywords

Navigation