Skip to main content

Advertisement

Log in

Graphene dispersion in a surfactant-free, polar solvent

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Here, we demonstrate dispersion of graphene nanoplatelets (GNPs) in ethylene glycol (EG), a polar dispersion medium, by a liquid-phase exfoliation method involving sonication and centrifugation. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy are used for qualitative and quantitative characterization of the graphene dispersions. TEM micrographs confirm the exfoliation and production of monolayer GNPs after sonication. Statistical analysis of TEM micrographs shows that increasing the sonication time increases the degree of exfoliation of GNPs. Raman spectroscopy studies also show that high-power probe sonication exfoliates multi-layer GNPs to few-layer GNPs. The proposed method is promising to provide monolayer and few-layer graphene dispersed in a polar medium, practical to multiple engineering applications including polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. ImageJ: http://imagej.nih.gov.

References

  1. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) One-pot synthesis of nylon 6–clay hybrid. J Polym Sci, Part A: Polym Chem 31(7):1755–1758

    Article  Google Scholar 

  2. Godovsky DY (2000) Device applications of polymer-nanocomposites, biopolymers PVA hydrogels, anionic polymerisation nanocomposites. Springer, Berlin Heidelberg, pp 163–205

    Book  Google Scholar 

  3. Kuila T, Srivastava SK, Bhowmick AK, Saxena AK (2008) Thermoplastic polyolefin based polymer–blend-layered double hydroxide nanocomposites. Compo Sci Technol 68(15–16):3234–3239

    Article  Google Scholar 

  4. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Article  Google Scholar 

  5. Meyer JC, Geim AK, Katsnelson M, Novoselov K, Booth T, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63

    Article  Google Scholar 

  6. Wang H, Zhang H, Zhao W, Zhang W, Chen G (2008) Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement. Compo Sci Technol 68(1):238–243

    Article  Google Scholar 

  7. Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H (2003) Materials: ultrahard polycrystalline diamond from graphite. Nature 421(6923):599–600

    Article  Google Scholar 

  8. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  9. Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari AC, Geim AK, Novoselov KS, Galiotis C (2009) Subjecting a graphene monolayer to tension and compression. Small 5(21):2397–2402

    Article  Google Scholar 

  10. Bellucci S (2005) Carbon nanotubes: physics and applications. Physica Status Solidi (c) 2(1):34–47

    Article  Google Scholar 

  11. Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66(11):1597–1605

    Article  Google Scholar 

  12. Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    Article  Google Scholar 

  13. Novoselov A.G.a.K (2010) The nobel prize in physics. <http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/>

  14. Bandla S, Hanan JC (2012) Microstructure and elastic tensile behavior of polyethylene terephthalate-exfoliated graphene nanocomposites. J Mater Sci 47(2):876–882. doi:10.1007/s10853-011-5867-z

    Article  Google Scholar 

  15. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  16. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  17. Johnson DW, Dobson BP, Coleman KS (2015) A manufacturing perspective on graphene dispersions. Curr Opin Colloid Interface Sci 20(5):367–382

    Article  Google Scholar 

  18. Texter J (2014) Graphene dispersions. Curr Opin Colloid Interface Sci 19(2):163–174

    Article  Google Scholar 

  19. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    Article  Google Scholar 

  20. Hildebrand JH, Prausnitz JM, Scott RL (1970) Regular and related solutions, 1st edn. Van Nostrand Reinhold Company, New York

  21. Wei Y, Sun Z (2015) Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr Opin Colloid Interface Sci 20(5–6):311–321

    Article  Google Scholar 

  22. Tao H, Zhang Y, Gao Y, Sun Z, Yan C, Texter J (2017) Scalable exfoliation and dispersion of two-dimensional materials–an update. Phys Chem Chem Phys 19(2):921–960

    Article  Google Scholar 

  23. Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6(7):864–871

    Article  Google Scholar 

  24. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano 3(9):563–568

    Article  Google Scholar 

  25. Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213

    Article  Google Scholar 

  26. Bergin SD, Sun Z, Streich P, Hamilton J, Coleman JN (2009) New solvents for nanotubes: approaching the dispersibility of surfactants. The J Phys Chem C 114(1):231–237

    Article  Google Scholar 

  27. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620

    Article  Google Scholar 

  28. O’Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN (2011) Graphene dispersion and exfoliation in low boiling point solvents. The J Phys Chem C 115(13):5422–5428

    Article  Google Scholar 

  29. Yeon C, Yun SJ, Lee K-S, Lim JW (2015) High-yield graphene exfoliation using sodium dodecyl sulfate accompanied by alcohols as surface-tension-reducing agents in aqueous solution. Carbon 83:136–143

    Article  Google Scholar 

  30. Zhang L, Zhang Z, He C, Dai L, Liu J, Wang L (2014) Rationally designed surfactants for few-layered graphene exfoliation: ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano 8(7):6663–6670

    Article  Google Scholar 

  31. Shih C-J, Lin S, Strano MS, Blankschtein D (2010) Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J Am Chem Soc 132(41):14638–14648

    Article  Google Scholar 

  32. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. John Wiley & Sons, Hoboken

    Google Scholar 

  33. May P, Khan U, O’Neill A, Coleman JN (2012) Approaching the theoretical limit for reinforcing polymers with graphene. J Mater Chem 22(4):1278–1282

    Article  Google Scholar 

  34. Wajid AS, Das S, Irin F, Ahmed HT, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50(2):526–534

    Article  Google Scholar 

  35. Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21(12):4222–4227

    Article  Google Scholar 

  36. Pu N-W, Wang C-A, Liu Y-M, Sung Y, Wang D-S, Ger M-D (2012) Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. J Taiwan Inst Chem Eng 43(1):140–146

    Article  Google Scholar 

  37. Fernández-Merino MJ, Paredes JI, Villar-Rodil S, Guardia L, Solís-Fernández P, Salinas-Torres D, Cazorla-Amorós D, Morallón E, Martínez-Alonso A, Tascón JMD (2012) Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 50(9):3184–3194

    Article  Google Scholar 

  38. Khan MY, Samanta A, Ojha K, Mandal A (2008) Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties. Asia-Pac J Chem Eng 3(5):579–585

    Article  Google Scholar 

  39. Myers D (2005) Surfactant science and technology. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  40. Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  41. Savage J, Wood R (1976) Enthalpy of dilution of aqueous mixtures of amides, sugars, urea, ethylene glycol, and pentaerythritol at 25 °C: enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional groups in dilute aqueous solutions. J Solution Chem 5(10):733–750

    Article  Google Scholar 

  42. Heilman M, Carter D, Gonzalez C (1965) The ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area. Soil Sci 100(6):409–413

    Article  Google Scholar 

  43. Carter D, Heilman M, Gonzalez C (1965) Ethylene glycol monoethyl ether for determining surface area of silicate minerals. Soil Sci 100(5):356–360

    Article  Google Scholar 

  44. Yuqin Z, Hengcong T, Yunnan G, Tao M, Jingjing D, Zhenyu S (2017) Graphene/porous beta TiO2 nanocomposites prepared through a simple hydrothermal method. Curr Graphene Sci 1:1–7

    Google Scholar 

  45. Khan U, Porwal H, O’Neill A, Nawaz K, May P, Coleman JN (2011) Solvent-exfoliated graphene at extremely high concentration. Langmuir 27(15):9077–9082

    Article  Google Scholar 

  46. Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3(9):2547–2556

    Article  Google Scholar 

  47. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12):2667–2673

    Article  Google Scholar 

  48. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett 7(2):238–242

    Article  Google Scholar 

  49. Yoon D, Moon H, Cheong H, Choi JS, Choi JA, Park BH (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55(3):1299–1303

    Google Scholar 

  50. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1290

    Article  Google Scholar 

  51. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758

    Article  Google Scholar 

  52. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5–6):51–87

    Article  Google Scholar 

  53. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    Article  Google Scholar 

  54. Childres I, Jauregui LA, Park W, Cao H, Chen YP (2013) Raman spectroscopy of graphene and related materials. Dev Photon and Mater Res 1:978–981

    Google Scholar 

  55. Khan U, O’Neill A, Porwal H, May P, Nawaz K, Coleman JN (2012) Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50(2):470–475

    Article  Google Scholar 

  56. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13(6):624–630

    Article  Google Scholar 

  57. Robertson AW, Warner JH (2013) Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale 5(10):4079–4093

    Article  Google Scholar 

  58. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154

    Article  Google Scholar 

  59. Boström M, Sernelius BE (2012) Repulsive van der Waals forces due to hydrogen exposure on bilayer graphene. Phys Rev A 85(1):012508

    Article  Google Scholar 

  60. Latil S, Henrard L (2006) Charge carriers in few-layer graphene films. Phys Rev Lett 97(3):036803

    Article  Google Scholar 

  61. Saito R, Dresselhaus G, Dresselhaus MS (1993) Electronic structure of double-layer graphene tubules. J Appl Phys 73(2):494–500

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge XG Sciences for providing xGnP-M-5 grade nanoplatelets. We also acknowledge Dr. Kaan Kalkan, Professor at the Mechanical and Aerospace Engineering department at OSU, and Ms. Lisa Whitworth, an associate at OSU Microscopy Lab, for their continuous support and help with Raman spectroscopy and TEM imaging. This work is part of an industry-sponsored research program at Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay C. Hanan.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabafrooz, V., Bandla, S. & Hanan, J.C. Graphene dispersion in a surfactant-free, polar solvent. J Mater Sci 53, 559–572 (2018). https://doi.org/10.1007/s10853-017-1456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1456-0

Keywords