Skip to main content

Advertisement

Log in

Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A facile method for synthesising porous carbon materials with high nitrogen content is employed in this study using 1H-Benzotriazole (BTA) as carbon precursor and ZnCl2 as active agent at 600–800 °C for 2 h under N2 atmosphere. Pure BTA completely degrades even at low temperature (270 °C) under inert gas, but ZnCl2 can convert the more organics to carbon because of its dehydration. The obtained NC-2-700 sample possesses a high specific surface area (1228 m2·g−1) and a nitrogen content up to 10.27 wt%. Moreover, the N-doped carbon exhibits a good electrochemical property (with a specific capacitance of 332 F·g−1 at the current density of 0.5 A·g−1), as well as an outstanding cycle stability (96.5% of the initial specific capacitance is maintained after 5000 cycles at 1 A·g−1). In addition, this obtained symmetric ultra-capacitor prepared from the NC-2-700 sample exhibits a highest energy density of 12.94 Wh·kg−1 with a power density of 375 W·kg−1 at a current density of 1 A·g−1. And even this NC-2-700//NC-2-700 supercapacitor gives 5.43 Wh·kg−1 with a power density of 3750 W·kg−1 at a high current density of 10 A·g−1. Consequently, these experimental results confirm that the porous carbon materials with high nitrogen content can be a prospective electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dusastre V, Martiradonna L (2017) Materials for sustainable energy. Nat Mater 16(1):15. doi:10.1038/nmat4838

    Article  Google Scholar 

  2. Lin CY, Zhang L, Zhao Z, Xia Z (2017) Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Adv Mater. doi:10.1002/adma.201606635

    Google Scholar 

  3. Liu R, Ma L, Huang S, Mei J, Xu J, Yuan G (2017) A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New J Chem 41(2):857–864

    Article  Google Scholar 

  4. Su Z, Yang C, Xie B, Lin Z, Zhang Z, Liu J, Li B, Kang F, Wong CP (2014) Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy Environ Sci 7(8):2652–2659

    Article  Google Scholar 

  5. Barzegar F, Bello A, Momodu D, Madito MJ, Dangbegnon J, Manyala N (2016) Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. J Power Sour 309:245–253

    Article  Google Scholar 

  6. Xu Z, Wang J, Hu Z, Geng R, Gan L (2017) Structure evolutions and high electrochemical performances of carbon aerogels prepared from the pyrolysis of phenolic resin gels containing ZnCl2. Electrochim Acta 231:601–608

    Article  Google Scholar 

  7. Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6(8):2497–2504

    Article  Google Scholar 

  8. Xiong S, Shi Y, Chu J, Gong M, Wu B, Wang X (2014) Preparation of high-performance covalently bonded polyaniline nanorods/graphene supercapacitor electrode materials using interfacial copolymerization approach. Electrochim Acta 127:139–145

    Article  Google Scholar 

  9. Zhang Q, Li Y, Feng Y, Feng W (2013) Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor. Electrochim Acta 90:95–100

    Article  Google Scholar 

  10. Yu X, Park HS (2014) Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon 77:59–65

    Article  Google Scholar 

  11. Gao F, Qu J, Zhao Z, Wang Z, Qiu J (2016) Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochim Acta 190:1134–1141

    Article  Google Scholar 

  12. Niu Z, Dong H, Zhu B, Li J, Hng HH, Zhou W, Chen X, Xie S (2013) Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater 25(7):1058–1064

    Article  Google Scholar 

  13. Kim S-I, Lee J-S, Ahn H-J, Song H-K, Jang J-H (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5(5):1596–1603

    Article  Google Scholar 

  14. Jagadale AD, Kumbhar VS, Dhawale DS, Lokhande CD (2013) Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. Electrochim Acta 98:32–38

    Article  Google Scholar 

  15. Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2(17):6086

    Article  Google Scholar 

  16. Fan X, Yu C, Yang J, Ling Z, Qiu J (2014) Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon 70:130–141

    Article  Google Scholar 

  17. Nasini UB, Bairi VG, Ramasahayam SK, Bourdo SE, Viswanathan T, Shaikh AU (2014) Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. J Power Sour 250:257–265

    Article  Google Scholar 

  18. Qu Y, Zhang Z, Zhang X, Ren G, Lai Y, Liu Y, Li J (2015) Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries. Carbon 84:399–408

    Article  Google Scholar 

  19. Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194

    Article  Google Scholar 

  20. Yu X, Kang Y, Park HS (2016) Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon 101:49–56

    Article  Google Scholar 

  21. Li M, Xue J (2014) Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J Phys Chem C 118(5):2507–2517

    Article  Google Scholar 

  22. Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin HJ (2015) Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Interfaces 7(6):3684–3690

    Article  Google Scholar 

  23. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923

    Article  Google Scholar 

  24. Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25(17):2474–2480

    Article  Google Scholar 

  25. Luo W, Wang B, Heron CG, Allen MJ, Morre J, Maier CS, Stickle WF, Ji X (2014) Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett 14(4):2225–2229

    Article  Google Scholar 

  26. Han J, Xu G, Ding B, Pan J, Dou H, MacFarlane DR (2014) Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J Mater Chem A 2(15):5352–5357

    Article  Google Scholar 

  27. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    Article  Google Scholar 

  28. Hu Y, Liu H, Ke Q, Wang J (2014) Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J Mater Chem A 2(30):11753–11758

    Article  Google Scholar 

  29. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447

    Article  Google Scholar 

  30. Tian W, Zhang H, Duan X, Sun H, Tade MO, Ang HM, Wang S (2016) Nitrogen-and sulfur-codoped hierarchically porous carbon for adsorptive and oxidative removal of pharmaceutical contaminants. ACS Appl Mater Interfaces 8(11):7184–7193

    Article  Google Scholar 

  31. Tan Z, Ni K, Chen G, Zeng W, Tao Z, Ikram M, Zhang Q, Wang H, Sun L, Zhu X, Wu X, Ji H, Ruoff RS, Zhu Y (2017) Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater. doi:10.1002/adma.201603414

    Google Scholar 

  32. Yun S, Kang SO, Park S, Park HS (2014) CO2-activated, hierarchical trimodal porous graphene frameworks for ultrahigh and ultrafast capacitive behavior. Nanoscale 6(10):5296–5302

    Article  Google Scholar 

  33. Wei JS, Ding H, Wang YG, Xiong HM (2015) Hierarchical porous carbon materials with high capacitance derived from Schiff-base networks. ACS Appl Mater Interfaces 7(10):5811–5819

    Article  Google Scholar 

  34. Jiang J, Bao L, Qiang Y, Xiong Y, Chen J, Guan S, Chen J (2015) Sol–gel process-derived rich nitrogen-doped porous carbon through KOH activation for supercapacitors. Electrochim Acta 158:229–236

    Article  Google Scholar 

  35. Molina-Sabio M, Rodrίguez-Reinoso F (2004) Role of chemical activation in the development of carbon porosity. Colloids Surf A 241(1–3):15–25

    Article  Google Scholar 

  36. Ma Y, Wang Q, Wang X, Sun X, Wang X (2014) A comprehensive study on activated carbon prepared from spent shiitake substrate via pyrolysis with ZnCl2. J Porous Mater 22(1):157–169

    Article  Google Scholar 

  37. Ma X, Liu M, Gan L, Zhao Y, Chen L (2013) Synthesis of micro-and mesoporous carbon spheres for supercapacitor electrode. J Solid State Electrochem 17(8):2293–2301

    Article  Google Scholar 

  38. Sing KSW (1985) Reporting physisorption data for gas, solid systems with special reference to the determination of surface area and porosity (recommendations, 1984). Pure Appl Chem 57(4):603–619

    Article  Google Scholar 

  39. Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Mullen K (2012) Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134(48):19532–19535

    Article  Google Scholar 

  40. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7(1):379–386

    Article  Google Scholar 

  41. Zhou J, Li W, Zhang Z, Xing W, Zhuo S (2012) Carbon dioxide adsorption performance of N-doped zeolite Y templated carbons. RSC Adv 2(1):161–167

    Article  Google Scholar 

  42. Yang B, Yu C, Yu Q, Zhang X, Li Z, Lei L (2015) N-doped carbon xerogels as adsorbents for the removal of heavy metal ions from aqueous solution. RSC Adv 5(10):7182–7191

    Article  Google Scholar 

  43. Hueso JL, Espinós JP, Caballero A, Cotrino J, González-Elipe AR (2007) XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon 45(1):89–96

    Article  Google Scholar 

  44. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798

    Article  Google Scholar 

  45. Sun L, Tian C, Fu Y, Yang Y, Yin J, Wang L, Fu H (2014) Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem Eur J 20(2):564–574

    Article  Google Scholar 

  46. Knight DS, White WB (2011) Characterization of diamond films by Raman spectroscopy. J Mater Res 4(02):385–393

    Article  Google Scholar 

  47. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57

    Article  Google Scholar 

  48. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758

    Article  Google Scholar 

  49. Wei X, Jiang X, Wei J, Gao S (2016) Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors. Chem Mater 28(2):445–458

    Article  Google Scholar 

  50. Ma G, Zhang Z, Sun K, Peng H, Yang Q, Ran F, Lei Z (2015) White clover based nitrogen-doped porous carbon for a high energy density supercapacitor electrode. RSC Adv 5(130):107707–107715

    Article  Google Scholar 

  51. Wu X, Zhou J, Xing W, Wang G, Cui H, Zhuo S, Xue Q, Yan Z, Qiao SZ (2012) High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio. J Mater Chem 22(43):23186–23193

    Article  Google Scholar 

  52. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sour 341:309–317

    Article  Google Scholar 

  53. Pan Y, Zhao Y, Mu S, Wang Y, Jiang C, Liu Q, Fang Q, Xue M, Qiu S (2017) Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials. J Mater Chem A. doi:10.1039/c7ta00162b

    Google Scholar 

  54. Chen L, Ji T, Mu L, Zhu J (2017) Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839–848

    Article  Google Scholar 

  55. Hu Y, Tong X, Zhuo H, Zhong L, Peng X, Wang S, Sun R (2016) 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv 6(19):15788–15795

    Article  Google Scholar 

  56. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1(21):6462

    Article  Google Scholar 

  57. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324

    Article  Google Scholar 

  58. Zhang J, Zhao XS (2012) On the configuration of supercapacitors for maximizing electrochemical performance. Chemsuschem 5(5):818–841

    Article  Google Scholar 

  59. Yang M, Zhong Y, Bao J, Zhou X, Wei J, Zhou Z (2015) Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials. J Mater Chem A 3(21):11387–11394

    Article  Google Scholar 

  60. Chen C, Xu G, Wei X, Yang L (2016) A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated N-doped carbon nanosheet architecture for use in supercapacitors. J Mater Chem A 4(25):9900–9909

    Article  Google Scholar 

  61. Ling Z, Wang Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(1):111–119

    Article  Google Scholar 

  62. Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, Xie E (2015) Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl Mater Interfaces 7(42):23515–23520

    Article  Google Scholar 

  63. Zhou J, Zhang Z, Xing W, Yu J, Han G, Si W, Zhuo S (2015) Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta 153:68–75

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Shanghai Leading Academic Discipline Project (Project Number J51503), National Natural Science Foundation of China (Project Number 20976105), Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Number LM201559), Shanghai Municipal Education Commission boosting project (Project Number 15cxy39), Science and Technology Commission of Shanghai Municipality Project (Project Number 14520503200), Shanghai Talent Development Funding (Project Number 201335), 2016 laboratory technique project-Chemical engineering simulation training centre (Project Number 3921NH163004007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hualin Lin or Sheng Han.

Ethics declarations

Conflict of interest

All authors listed have declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8769 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wei, H., Fu, N. et al. Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials. J Mater Sci 53, 2669–2684 (2018). https://doi.org/10.1007/s10853-017-1453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1453-3

Keywords

Navigation