Skip to main content

Advertisement

Log in

FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composites of carbon and magnetic metal are always the most attractive candidates for high-performance microwave absorbing materials (MAMs) due to their synergetic loss mechanisms and tunable electromagnetic properties. Herein, FeCo alloy nanoparticles have been innovatively coupled with ordered mesoporous carbon through impregnation and in situ hydrogenthermal reduction. Incorporation of FeCo alloy nanoparticles into mesoporous carbon provides a significant enhancement in microwave absorption, and both strong reflection loss (−73.8 dB at 10.6 GHz) and wide response bandwidth (4.0–18.0 GHz over −10.0 dB) can be simultaneously achieved in the optimized composite. This improved microwave absorption property is much better than that of many mesoporous carbon-based composites ever reported. Electromagnetic analysis reveals that FeCo alloy nanoparticles display dual electromagnetic functions. On the one hand, they produce obvious magnetic loss ability in the composites, and on the other hand, they moderately weaken the dielectric loss ability as compared to pristine mesoporous carbon. A delta function calculation indicates that the narrowed gap between complex permittivity and complex permeability is beneficial to creating the matched characteristic impedance, which affords the prerequisite for the formation of desirable microwave absorption performance. This study not only identifies FeCo alloy/mesoporous carbon as promising MAMs and reveals the origin of the microwave absorption enhancement, but also paves a new way for designing magnetic carbon-based MAMs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Yang HJ, Cao WQ, Zhang DQ, Su TJ, Shi HL, Wang WZ, Yuan J, Cao MS (2015) NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl Mater Interfaces 7:7073–7077

    Article  Google Scholar 

  2. Singh AP, Mishra M, Sambyal P, Gupta BK, Singh BP, Chandra A, Dhawan SK (2014) Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution. J Mater Chem A 2:3581–3593

    Article  Google Scholar 

  3. Liu QH, Cao Q, Bi H, Liang CY, Yuan KP, She W, Yang YJ, Che RC (2016) CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 28:486–490

    Article  Google Scholar 

  4. Tian CH, Du YC, Cui CS, Deng ZL, Xue JL, Xu P, Qiang R, Wang Y, Han XJ (2017) Synthesis and microwave absorption enhancement of yolk-shell Fe3O4@C microspheres. J Mater Sci 52:6349–6361

    Article  Google Scholar 

  5. Wu HJ, Wu GL, Wang LD (2015) Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:443–451

    Article  Google Scholar 

  6. Tian CH, Du YC, Xu P, Qiang R, Wang Y, Ding D, Xue JL, Ma J, Zhao HT, Han XJ (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7:20090–20099

    Article  Google Scholar 

  7. Zhao B, Shao G, Fan B, Zhao W, Chen Y, Zhang R (2015) Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Adv 5:9806–9814

    Article  Google Scholar 

  8. Zhang Y, Huang Y, Chen HH, Huang ZY, Yang Y, Xiao PS, Zhou Y, Chen YS (2016) Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105:438–447

    Article  Google Scholar 

  9. Zhu HP, Zhang HY, Chen YM, Li ZH, Zhang DF, Zeng GX, Huang YX, Wang WG, Wu QB, Zhi CY (2016) The electromagnetic property and microwave absorption of wormhole-like mesoporous carbons with different surface areas. J Mater Sci 51:9723–9731. doi:10.1007/s10853-016-0206-z

    Article  Google Scholar 

  10. Qiang R, Du YC, Wang Y, Wang N, Tian CH, Ma J, Xu P, Han XJ (2016) Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98:599–606

    Article  Google Scholar 

  11. Lu MM, Cao MS, Chen YH, Cao WQ, Liu J, Shi HL, Zhang DQ, Wang WZ, Yuan J (2015) Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl Mater Interfaces 7:19408–19415

    Article  Google Scholar 

  12. Xiang J, Li JL, Zhang XH, Ye Q, Xu JH, Shen XQ (2014) Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J Mater Chem A 2:16905–16914

    Article  Google Scholar 

  13. Lv HL, Ji GB, Liu W, Zhang HQ, Du YW (2015) Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J Mater Chem C 3:10232–10241

    Article  Google Scholar 

  14. Wang LN, Xia XL, Li YF, Yang F, Zhang LQ, Liu LP, Ren X, Yang HT (2014) Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J Mater Chem A 2:14940–14946

    Article  Google Scholar 

  15. Yuan KP, Che RC, Cao Q, Sun ZK, Yue Q, Deng YH (2015) Designed fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheres. ACS Appl Mater Interfaces 7:5312–5319

    Article  Google Scholar 

  16. Li GM, Wang LC, Li WX, Xu Y (2015) Fe-, Co-, and Ni-loaded porous activated carbon balls as lightweight microwave absorbents. ChemPhysChem 16:3458–3467

    Article  Google Scholar 

  17. He P, Hou ZL, Zhang KL, Li J, Yin K, Feng S, Bi S (2017) Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J Mater Sci 52:8258–8267. doi:10.1007/s10853-017-1041-6

    Article  Google Scholar 

  18. Wu ZX, Zhao DY (2011) Ordered mesoporous materials as adsorbents. Chem Commun 47:3332–3338

    Article  Google Scholar 

  19. Li XH, Antonietti M (2013) Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem Soc Rev 42:6593–6604

    Article  Google Scholar 

  20. Xia KS, Gao QM, Wu CD, Song SQ, Ruan ML (2007) Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon 45:1989–1996

    Article  Google Scholar 

  21. Nitze F, Fossum K, Xiong SZ, Matic A, Palmqvist AEC (2016) Sulfur-doped ordered mesoporous carbons: a stability-improving sulfur host for lithium-sulfur battery cathodes. J Power Sour 317:112–119

    Article  Google Scholar 

  22. Luo C, Xu YH, Zhu YJ, Liu YH, Zheng SY, Liu Y, Langrock A, Wang CS (2013) Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 7:8003–8010

    Article  Google Scholar 

  23. Sanchez-Sanchez A, Fierro V, Izquierdo MT, Celzard A (2016) Functionalized, hierarchical and ordered mesoporous carbons for high-performance supercapacitors. J Mater Chem A 4:6140–6148

    Article  Google Scholar 

  24. Tan YY, Zhang W, Gao YL, Wu JX, Tang B (2015) Synthesis of ordered mesoporous carbon nanofiber arrays/nickel-boron amorphous alloy with high electrochemical performance for supercapacitor. J Mater Sci 50:4622–4628. doi:10.1007/s10853-015-9012-2

    Article  Google Scholar 

  25. Wang T, He JP, Zhou JH, Ding XC, Zhao JQ, Wu SC, Guo YX (2010) Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon-alumina nanocomposites. Micropor Mesopor Mater 134:58–64

    Article  Google Scholar 

  26. Du YC, Liu T, Gao HB, Xu P, Wang JY, Wang XH, Han XJ (2012) The electromagnetic properties and microwave absorption of mesoporous carbon. Mater Chem Phys 135:884–891

    Article  Google Scholar 

  27. Zhou H, Wang JC, Zhuang JD, Liu Q (2013) A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 5:12502–12511

    Article  Google Scholar 

  28. Wu HJ, Wang LD, Wang YM, Guo SL, Shen ZY (2012) Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles. J Alloy Compd 525:82–86

    Article  Google Scholar 

  29. Qiang R, Du YC, Zhao HT, Wang Y, Tian CH, Li ZG, Han XJ, Xu P (2015) Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J Mater Chem A 3:13426–13434

    Article  Google Scholar 

  30. Wang JC, Zhou H, Zhuang JD, Liu Q (2015) Magnetic gamma-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers. Phys Chem Chem Phys 17:3802–3812

    Article  Google Scholar 

  31. Wu GL, Cheng YH, Ren YY, Wang YQ, Wang ZD, Wu HJ (2015) Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J Alloy Compd 652:346–350

    Article  Google Scholar 

  32. Liu JR, Itoh M, Horikawa T, Machida K, Sugimoto S, Maeda T (2005) Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites. J Appl Phys 98:054305

    Article  Google Scholar 

  33. Fan XA, Guan JG, Wang W, Tong GX (2009) Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J Phys D Appl Phys 42:075006

    Article  Google Scholar 

  34. Wang Y, Du YC, Guo D, Qiang R, Tian CH, Xu P, Han XJ (2017) Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption. J Mater Sci 52:4399–4411. doi:10.1007/s10853-016-0687-9

    Article  Google Scholar 

  35. Zhou JH, He JP, Li GX, Wang T, Sun D, Ding XC, Zhao JQ, Wu SC (2010) Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers. J Phys Chem C 114:7611–7617

    Article  Google Scholar 

  36. Shen GZ, Xu YW, Liu B, Du P, Li Y, Zhu J, Zhang D (2016) Enhanced microwave absorption properties of N-doped ordered mesoporous carbon plated with metal Co. J Alloy Compd 680:553–559

    Article  Google Scholar 

  37. Guo SL, Wang LD, Wu HJ (2015) Facile synthesis and enhanced electromagnetic wave absorption of thorny-like Fe-Ni alloy/ordered mesoporous carbon composite. Adv Powder Technol 26:1250–1255

    Article  Google Scholar 

  38. Wu HJ, Wang LD, Wang YM, Guo SL, Shen ZY (2012) Enhanced microwave absorbing properties of carbonyl iron-doped Ag/ordered mesoporous carbon nanocomposites. Mater Sci Eng B 177:476–482

    Article  Google Scholar 

  39. Liu Q, Wang LD, Wu HJ, Wu H (2014) Effect of carbonization temperature on dielectric and microwave absorbing properties of cobalt doped mesoporous carbon composites. NANO 9:1450033

    Article  Google Scholar 

  40. Li GX, Guo YX, Sun X, Wang T, Zhou JH, He JP (2012) Synthesis and microwave absorbing properties of FeNi alloy incorporated ordered mesoporous carbon-silica nanocomposite. J Phys Chem Solids 73:1268–1273

    Article  Google Scholar 

  41. Han Z, Li D, Wang H, Liu XG, Geng DY, Zhang ZD (2009) Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl Phys Lett 95:023114

    Article  Google Scholar 

  42. Lv HL, Ji GB, Zhang HQ, Li M, Zuo ZZ, Zhao Y, Zhang BS, Tang DM, Du YW (2015) CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties. Sci Rep 5:18249

    Article  Google Scholar 

  43. Duan YP, Zhang YH, Wang TM, Gu SC, Li X, Lv XJ (2014) Evolution study of microstructure and electromagnetic behaviors of Fe-Co-Ni alloy with mechanical alloying. Mater Sci Eng B-Adv 185:86–93

    Article  Google Scholar 

  44. Kodama D, Shinoda K, Kasuya R, Doi M, Tohji K, Jeyadevan B (2012) Potential of sub-micron-sized Fe-Co particles for antenna applications. J Appl Phys 111:07A331

    Article  Google Scholar 

  45. Yu ZX, Zhang N, Yao ZP, Han XJ, Jiang ZH (2013) Synthesis of hierarchical dendritic micro-nano structure CoxFe1 − x alloy with tunable electromagnetic absorption performance. J Mater Chem A 1:12462–12470

    Article  Google Scholar 

  46. Wang XQ, Liang CD, Dai S (2008) Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions. Langmiur 24:7500–7505

    Article  Google Scholar 

  47. Schüth F, Wingen A, Sauer J (2001) Oxide loaded ordered mesoporous oxides for catalytic applications. Micropor Mesopor Mater 44–45:465–476

    Article  Google Scholar 

  48. Noh SH, Seo MH, Kang J, Okajima T, Han B, Ohsaka T (2016) Towards a comprehensive understanding of FeCo coated with N-doped carbon as a stable bi-functional catalyst in acidic media. NPG Asia Mater 8:e312

    Article  Google Scholar 

  49. Deng J, Ren PJ, Deng DH, Yu L, Yang F, Bao XH (2014) Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ Sci 7:1919–1923

    Article  Google Scholar 

  50. Zhang J, Muller J-O, Zhang WQ, Wang D, Su DS, Schlogl R (2008) Individual Fe-Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties. Nano Lett 8:2738–2743

    Article  Google Scholar 

  51. Wen SL, Liu Y, Zhao XC, Cheng JW (2014) Optimal microwave absorption of hierarchical cobalt dendrites enhanced by multiple dielectric and magnetic resonance. J Appl Phys 116:054310

    Article  Google Scholar 

  52. Du YC, Liu WW, Qiang R, Wang Y, Han XJ, Ma J, Xu P (2014) Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl Mater Interfaces 6:12997–13006

    Article  Google Scholar 

  53. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. J Phys Rev B 61:14095–14107

    Article  Google Scholar 

  54. Qiang R, Du YC, Chen DT, Ma WJ, Wang Y, Xu P, Ma J, Zhao HT, Han XJ (2016) Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J Alloy Compd 681:384–393

    Article  Google Scholar 

  55. Cui CK, Du YC, Li TH, Zheng XY, Wang XH, Han XJ, Xu P (2012) Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J Phys Chem B 116:9523–9531

    Article  Google Scholar 

  56. Wang GZ, Gao Z, Wan GP, Lin SW, Yang P, Qin Y (2014) High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res 7:704–716

    Article  Google Scholar 

  57. Zhou JH, He JP, Wang T, Li GX, Guo YX, Zhao JQ, Ma YO (2011) Design of mesostructured γ-Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications. J Alloys Compd 509:8211–8214

    Article  Google Scholar 

  58. Du L, Du YC, Li Y, Wang JY, Wang C, Wang XH, Xu P, Han XJ (2010) Surfactant-assisted solvothermal synthesis of Ba(CoTi)xFe12-2xO19 nanoparticles and enhancement in microwave absorption properties of polyaniline. J Phys Chem C 114:19600–19606

    Article  Google Scholar 

  59. Wen B, Cao MS, Hou ZL, Song WL, Zhang L, Lu MM, Jin HB, Fang XY, Wang WZ, Yuan J (2013) Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65:124–139

    Article  Google Scholar 

  60. Wang Y, Du YC, Qiang R, Tian CH, Xu P, Han XJ (2016) Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber. Adv Mater Interfaces 3:1500684

    Article  Google Scholar 

  61. Zhao XC, Zhang ZM, Wang LY, Xi K, Cao QQ, Wang DH, Yang Y, Du YW (2013) Excellent microwave absorption property of Graphene-coated Fe nanocomposites. Sci Rep 3:3421

    Article  Google Scholar 

  62. Jiang JJ, Li D, Geng DY, An J, He J, Liu W, Zhang ZD (2014) Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 6:3967–3971

    Article  Google Scholar 

  63. Liu QL, Zhang D, Fan TX (2008) Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl Phys Lett 93:013110

    Article  Google Scholar 

  64. Deng LJ, Han MG (2007) Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl Phys Lett 91:023119

    Article  Google Scholar 

  65. Li D, Feng Y, Pan DS, Jiang LW, Dai ZM, Li SJ, Wang Y, He J, Liu W, Zhang ZD (2016) Negative imaginary parts of complex permeability and microwave absorption performance of core double-shelled FeCo/C/Fe2.5Cr0.5Se4 nanocomposites. RSC Adv 6:73020–73027

    Article  Google Scholar 

  66. Sun Y, Xu JN, Qiao W, Xu XB, Zhang WL, Zhang KY, Zhang X, Chen X, Zhong W, Du YW (2016) Constructing two-, zero-, and one-dimensional integrated nanostructures: an effective strategy for high microwave absorption performance. ACS Appl Mater Interfaces 8:31878–31886

    Article  Google Scholar 

  67. Vinoy KJ, Jha RM (1996) Radar absorbing materials: from theory to design and characterization. Kluwer, Boston

    Book  Google Scholar 

  68. Wang Y, Du YC, Xu P, Qiang R, Han XJ (2017) Recent advances in conjugated polymer-based microwave absorbing materials. Polymers 9:29

    Article  Google Scholar 

  69. Ma Z, Zhang Y, Cao CT, Yuan J, Liu QF, Wang JB (2011) Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Phys B 406:4620–4624

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (21371039, 21676065, and 21003029) and Natural Science Foundation of Heilongjiang Province (B201405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunchen Du or Xijiang Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, W., Wang, Y., Du, Y. et al. FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption. J Mater Sci 52, 13636–13649 (2017). https://doi.org/10.1007/s10853-017-1439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1439-1

Keywords

Profiles

  1. Ying Wang