Journal of Materials Science

, Volume 52, Issue 23, pp 13365–13377 | Cite as

A thin PANI and carrageenan–gold nanoparticle film on a flexible gold electrode as a conductive and low-cost platform for sensing in a physiological environment

  • Emanuel Airton de Oliveira Farias
  • Silvania Siqueira Nogueira
  • Aline Márcia de Oliveira Farias
  • Monialine Sousa de Oliveira
  • Maria de Fátima Cardoso Soares
  • Helder Nunes da Cunha
  • José Ribeiro dos Santos Junior
  • Durcilene Alves da Silva
  • Peter Eaton
  • Carla EirasEmail author


In this work, we report the production of a layer-by-layer (LbL) film of gold nanoparticles stabilized with carrageenan (carr-AuNPs) interspersed with a conductive polyaniline (PANI) layer. Conventionally, PANI has poor electroactivity in physiological buffers, limiting its using in electrochemical biosensors. The films were prepared on low cost and easy to manufacture flexible gold electrodes (FEAu). Two adsorption sequences were tested for production of the films—PANI/carr-AuNP and carr-AuNP/PANI. The gold nanoparticle size and colloidal stability were characterized. The films were characterized by cyclic voltammetry, UV–visible spectroscopy and atomic force microscopy. The results showed the synergistic effects of the carr-AuNPs (120 nm) and PANI, which improved both the electrochemical response and the stability of the conductive polymer in physiological medium by three times. The presence of the carr-AuNPs in the film caused a significant increase in roughness of the FEAu-modified electrode compared to that of an unmodified electrode, resulting in an increased active electrode area. Studies of film growth by UV–Vis spectroscopy indicated that the deposition mechanisms of both films involved an auto-regulating adsorption process, with the same amount of material adsorbed in each coating step. The PANI/carr-AUNP film showed considerable improvement in stability and conductivity compared to PANI-only films in the physiological environment, which confers advantages for use as a biosensor.



The work of Peter Eaton was supported by the Fundação para a Ciência e a Tecnologia (FCT) under Grant No. UID/MULTI/04378/2013 - POCI/01/0145/FEDER/007728 with financial support from FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020.


  1. 1.
    Deng H, Zhou X, Wang X, Zhang C, Ding B, Zhang Q, Du Y (2010) Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohyd Polym 80:474–479CrossRefGoogle Scholar
  2. 2.
    Farias EAO, Dionisio NA, Quelemes PV, Leal SH, Matos JME, Filho ECS, Bechtold IH, Leite JRSA, Eiras C (2014) Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications. Mater Sci Eng C Sens Syst (Print) 35:449–454CrossRefGoogle Scholar
  3. 3.
    funds and co-financed by FEDER, unGoogle Scholar
  4. 4.
    Cai X, Gao X, Wang L, Wu Q, Lin XA (2013) A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sens Actuators B 181:575–583CrossRefGoogle Scholar
  5. 5.
    /007728 with financial suppoGoogle Scholar
  6. 6.
    Brinker CJ, Scherer GW (1990) Sol–gel science the physical and chemistry of processing. Academic Press, BostonGoogle Scholar
  7. 7.
    Pandit P, Banerjee M, Gupta A (2014) Growth and morphological analysis of ultrathin PMMA films prepared by Langmuir–Blodgett deposition technique. Colloids Surf A 454:189–195CrossRefGoogle Scholar
  8. 8.
    Ambrosi A, Morrin A, Smyth MR, Killard AJ (2008) The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal Chim Acta 609:37–43CrossRefGoogle Scholar
  9. 9.
    Patel J, Mighri F, Ajji A, Tiwari D, Chaudhuri TK (2014) Spin-coating deposition of PbS and CdS thin films for solar cell application. Appl Phys A 117:1791–1799CrossRefGoogle Scholar
  10. 10.
    Roeder M, Beleke AB, Uweguntow U, Johanna Buensow J, Guerfi A, Posset U, Lorrmann H, Zaghib K, Sextl G (2016) Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications. J Power Sources 301:35–40CrossRefGoogle Scholar
  11. 11.
    Decher G (1997) Fuzzy nanoassembilies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRefGoogle Scholar
  12. 12.
    Paterno LG, Mattoso LHC, De Oliveira Jr ON (2001) Filmes poliméricos ultrafinos produzidos pela técnica de automontagem: preparação, propriedades e aplicações. Quím Nova 24(2):235–238CrossRefGoogle Scholar
  13. 13.
    Duran N, Matosso LHC, Morais PC (2006) Nanotecnologia: introdução, preparação e caracterização de nanomateriais e exemplos de aplicação. Artliber 13–68Google Scholar
  14. 14.
    Rusling JF, Hvastkovs EG, Hull DO, Schenkman JB (2008) Biochemical applications of ultrathin films of enzymes, polyions and DNA. Chem Commun 14(2):141–154CrossRefGoogle Scholar
  15. 15.
    Crespilho FN, Zucolotto V, Oliveira ON Jr, Nart FC (2006) Electrochemistry of layer–by–layer films. Int J Electrochem Sci 1:194–214Google Scholar
  16. 16.
    Farias EAO, Santos MC, Dionisio NA, Quelemes PV, Leite JRSA, Eaton P, Da Silva, Eiras C (2015) Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI. Mater Sci Eng B Solid-State Mater Adv Technol 200:9–21CrossRefGoogle Scholar
  17. 17.
    Zhang SP, ShanLG Tian ZR, Zheng Y, Shi LY, Zhang DS (2008) Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue. Chin Chem Lett 19:592–594CrossRefGoogle Scholar
  18. 18.
    Souza TTL, Moraes ML, Ferreira M (2013) Use of hemoglobin as alternative to peroxidases in cholesterol amperometric biosensors. Sens Actuators 178:23–106CrossRefGoogle Scholar
  19. 19.
    Zou L, Li Y, Cao S, Ye BA (2014) New voltammetric sensor for sensitive and selective determination of xanthine based on DNA and polyaniline composite Langmuir–Blodgett film. Talanta 129:346–351CrossRefGoogle Scholar
  20. 20.
    Yadav S, Kumar A, Pundir CS (2011) Amperometriccreatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film. Anal Biochem 419:277–283CrossRefGoogle Scholar
  21. 21.
    Chu W, Zhou Q, Lia S, Zhao W, Li N, Zheng J (2015) Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film. Appl Surf Sci 353:425–432CrossRefGoogle Scholar
  22. 22.
    Mattoso LHC (1996) Polianilinas: síntese Estrutura e Propriedades. Química Nova 19(4):388–398Google Scholar
  23. 23.
    Santos MC, Munford ML, Bianchi RF (2012) Influence of NiCr/Au electrodes and multilayer thickness on the electrical properties of PANI/PVS ultrathin film grown by LbL deposition. Mater Sci Eng B 177(4):359–366CrossRefGoogle Scholar
  24. 24.
    Zhang X, Wei Y, Ding Y (2014) Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine. Anal Chim Acta 835:23–36CrossRefGoogle Scholar
  25. 25.
    Arora K, Sumana G, Saxena V, Gupta RK, Gupta SK, Yakmi JV, Pandey MK, Chand S, Malhotra BD (2007) Improved performance of polyaniline-uricase biosensor. Anal Chim Acta 594:17–23CrossRefGoogle Scholar
  26. 26.
    Crespilho FN, Iost RM, Travain SA, Oliveira ON, Zucolotto V (2009) Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens Bioelectron 24:3073–3077CrossRefGoogle Scholar
  27. 27.
    Miao Z, Wang P, Zhong A, Yang M, Xu Q, Haoa S, Hu X (2015) Development of a glucose biosensor based on electrodeposited gold nanoparticles–polyvinylpyrrolidone–polyanilinenanocomposites. J Electroanal Chem 756:153–160CrossRefGoogle Scholar
  28. 28.
    Tian S, Liu J, Zhu T, Knoll W (2004) Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chem Mater 16:4103–4108CrossRefGoogle Scholar
  29. 29.
    Zou L, Li Y, Cao S, Ye B (2013) Gold nanoparticles/polyaniline Langmuir-Blodgett Film modified glassy carbon electrode as voltammetric sensor for detection of epinephrine and uric acid. Talanta 117:333–337CrossRefGoogle Scholar
  30. 30.
    Lukachova LV, Shkerin EA, Puganova EA, Karyakina EE, Kiseleva SG, Orlov AV, Karpacheva GP, Karyakin AA (2003) Electroactivity of chemically synthesized polyaniline in neutral and alkaline aqueous solutions: role of self-doping and external doping. J Electroanal Chem 544:59–63CrossRefGoogle Scholar
  31. 31.
    Haojie Z, Yuqing L, Ping Y, Lei S, Lanqun M (2009) Doping polyaniline with pristine carbon nanotubes into electroactive, nanocomposite in neutral and alkaline media. Electrochem Commun 11:65–968CrossRefGoogle Scholar
  32. 32.
    Tao L, Yi Z, Zhenjun D, Lei D, Shu D, Na L, Zongyi Q (2017) Composite nanofibers by coating polypyrrole on the surface of polyaniline nanofibers formed in presence of phenylenediamine as electrode materials in neutral electrolyte. Electrochim Acta 243:228–238CrossRefGoogle Scholar
  33. 33.
    Diaz AF, Logan J (1980) Electroactive polyaniline films. J Electroanal Chem 111:111–114CrossRefGoogle Scholar
  34. 34.
    Rawaida LR, Mahnaz MA, Paridah MT, Amin M, Yusran S, Lee YH (2017) Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization. RSC Adv 7:25191–25198CrossRefGoogle Scholar
  35. 35.
    Xingwei L, Shirong P, Tao Z, Gengchao W (2010) Self-dispersed polyaniline derivative extending electrochemical activity to neutral media. Synth Metals 160(11):1343–1348Google Scholar
  36. 36.
    Teixeira PRS, Do Nascimento ASM, Farias EAO, Dionisio NA, Filho ECS, Eiras C (2015) Layer-by-layer hybrid films of phosphate cellulose and electroactive polymer as chromium (VI) sensors. J Solid State Electrochem 19:1–11CrossRefGoogle Scholar
  37. 37.
    Silva JRT, Farias EAO, Filho ECS, Eiras C (2014) Development and characterization of composites based on polyaniline and modified microcrystalline cellulose with anhydride maleic as platforms for electrochemical trials. Colloid Polym Sci (Print) 293:229–237Google Scholar
  38. 38.
    Janovák L, Dékány I (2010) Optical properties and electric conductivity of gold nanoparticle-containing, hydrogel-based thin layer composite films obtained by photopolymerization. Appl Surf Sci 256:2809–2817CrossRefGoogle Scholar
  39. 39.
    Yu Q, Huang H, Peng X, Ye Z (2011) Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement. Nanoscale 3:3868–3875CrossRefGoogle Scholar
  40. 40.
    Ballarin B, Barreca D, Cassani MC, Carraro G, Maccato C, Mignani A, Lazzari D, Bertola M (2016) Gold nanoparticles-decorated fluoroalkylsilane nano-assemblies for electrocatalytic applications. Appl Surf Sci 362:42–48CrossRefGoogle Scholar
  41. 41.
    Csarnovics I, Hajdu P, Biri S, Hegedűs C, Kökényesi S, Rácz R, Csik A (2016) Preliminary studies of creation of gold nanoparticles on titanium surface towards biomedical applications. Vacuum 126:55–58CrossRefGoogle Scholar
  42. 42.
    Chomoucka J, Drbohlavova J, Masarik M, Ryvolova M, Huska D, Prasek J, Horna A, Trnkova L, Provaznik I, Adam V, Hubalek J, Kizek R (2012) Nanotechnologies for society. New designs and applications of nanosensors and nanobiosensors in medicine and environmental analysis. Int J Nanotechnol 9:746–783CrossRefGoogle Scholar
  43. 43.
    Marin S, Merkoci A (2012) Nanomaterials based electrochemical sensing applications for safety and security. Electroanalysis 24:459–469CrossRefGoogle Scholar
  44. 44.
    Compton RG, Wildgoose GG, Rees NV, Streeter I, Baron R (2008) Design, fabrication, characterization and application of nanoelectrode arrays. Chem Phys Lett 459:1–17CrossRefGoogle Scholar
  45. 45.
    Mashhadizadeh MH, Talemi RP (2016) Synergistic effect of magnetite and gold nanoparticles onto the response of a label-free impedimetric hepatitis B virus DNA biosensor. Mater Sci Eng C 59:773–781CrossRefGoogle Scholar
  46. 46.
    Vicentini FC, Garcia LLC, Figueiredo-filho LCS, Janegitz BC, Fatibello-filho O (2016) A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzyme Microb Technol 84:17–23CrossRefGoogle Scholar
  47. 47.
    Choo H, He B, Liew KY, Liu H, Li J (2006) Morphology and control of Pd nanoparticles. J Mol Catal A Chem 244:217–228CrossRefGoogle Scholar
  48. 48.
    Medynska AZ, Marchelek M, Diak M, Grabowska E (2015) Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Coll Interface Sci 229:80–107CrossRefGoogle Scholar
  49. 49.
    Lyutov VV, Ivanov SD, Mirsky VM, Tsakova VT (2013) Polyaniline doped with poly (acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions. Chem Pap 67:1002–1011CrossRefGoogle Scholar
  50. 50.
    Bondarenko OM, Ivask A, Kahru A, Vija H, Titma T, Visnapuu M, Joost U, Pudovac K, Adamberg S, Visnapuu T, Alamäe T (2016) Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles. Carbohyd Polym 136:710–720CrossRefGoogle Scholar
  51. 51.
    Maciel JS, Chaves LS, Souza BWS, Teixeira DIA, Freitas ALP, Feitosa JPA, Paula RCM (2008) Structural characterization of cold extracted fractions of soluble sulfated polysaccharide from red seaweed Gracilariabirdiae. Carbohyd Polym 71:559–565CrossRefGoogle Scholar
  52. 52.
    Shukla MK, Singh RP, Reddy CRK, Jha B (2012) Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Biores Technol 107:295–300CrossRefGoogle Scholar
  53. 53.
    Matos RA, Cordeiro TS, Samad RE, Vieira ND Jr, Courrol LC (2012) Green synthesis of gold nanoparticles of different sizes and shapes using agar–agar water solution and femtosecond pulse laser irradiation. Appl Phys A 109:737–741CrossRefGoogle Scholar
  54. 54.
    Joseph S, Mathew B (2015) Microwave-assisted facile green synthesis of silver nanoparticles and spectroscopic investigation of the catalytic activity. Bull Mater Sci 38:659–666CrossRefGoogle Scholar
  55. 55.
    Tian S, Liu J, Zhu T, Knoll W (2004) Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chem Mater 16:4103–4108CrossRefGoogle Scholar
  56. 56.
    Madeira MP (2014) Estudo da influência do plasma nas superfícies do vidro e ITO. Universidade Federal do Piauí, Dissertação de Mestrado em FísicaGoogle Scholar
  57. 57.
    Eaton P, West P (2010) Atomic force microscopy. Oxford University Press, OxfordCrossRefGoogle Scholar
  58. 58.
    Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262CrossRefGoogle Scholar
  59. 59.
    Eaton P, Quaresma P, Soares C, Neves C, Almeida MP, Pereira E, West P (2017) A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy 182:179–190CrossRefGoogle Scholar
  60. 60.
    Mazumber S, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B (2002) Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). Int J Biol Macromol 31:87–95CrossRefGoogle Scholar
  61. 61.
    Tojo E, Prado J (2003) Chemical composition of carrageenan blends determined by IR spectroscopy combined with a PLS multivariate calibration method. Carbohyd Res 338:1309–1312CrossRefGoogle Scholar
  62. 62.
    Zhang L, Lang Q, Shi Z (2010) Electrochemical synthesis of three-dimensional polyaniline network on 3 aminobenzenesulfonic acid functionalized glassy carbon electrode and its application. Am J Anal Chem 1:102–112CrossRefGoogle Scholar
  63. 63.
    Makarov VV, Love AJ, Sinitsyna OV, Makarov SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6(1):35–44Google Scholar
  64. 64.
    Singh M, Tiwary AK, Kaur G (2010) Investigations on interpolymer complexes of cationic guar gum and xanthan gum for formulation of bioadhesive films. Res Pharm Sci 5(2):79–87Google Scholar
  65. 65.
    Plácido A, Farias EAO, Marani AG, Vasconcelos AC, Mafud YP, Mascarenhas Eiras C, Leite JRSA, Delerue-Matos C (2016) Layer-by-layer films containing peptides of the Cry1Ab16 toxin from Bacillus thuringiensis for potential biotechnological applications. Mater Sci Eng C 61:832–841CrossRefGoogle Scholar
  66. 66.
    Putzbach W, Ronkainen N (2013) J. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13:4811–4840CrossRefGoogle Scholar
  67. 67.
    Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–325CrossRefGoogle Scholar
  68. 68.
    Lin YC, Yu BY, Lin WC, Lee SH, Kuo CH, Shyue JJ (2009) Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups. J Colloid Interface Sci 340:126–130CrossRefGoogle Scholar
  69. 69.
    Huang WS, Humphrey BD, Macdiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 82:2385–2400CrossRefGoogle Scholar
  70. 70.
    Kelly FM, Johnston JH, Borrmann T, Richardson MJ (2007) Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. Eur J Inorg Chem 35:5571–5577CrossRefGoogle Scholar
  71. 71.
    Pruneanu S, Veress E, Marian I, Oniciu L (1999) Characterization of polyaniline by cyclic voltammetry and UV–Vis absorption spectroscopy. J Mater Sci 34:2733–2739CrossRefGoogle Scholar
  72. 72.
    Arslan A, Hur E (2012) Supercapacitor applications of polyaniline and poly (Nmethylaniline) coated pencil graphite electrode. Int J Electrochem Sci 7:12558–12572Google Scholar
  73. 73.
    Jo Y, Cho W, Inamdar AI, Kim BC, Kim J, Kim H, Yu K, Kim D (2014) Electrochemical supercapacitor properties of polyaniline thin films in organic salt added electrolytes. J Appl Polym Sci 131(11). doi: 10.1002/app.40306
  74. 74.
    Zhu H, Peng S, Jiang W (2013) Electrochemical properties of PANI as single electrode of electrochemical capacitors in acid electrolytes. Sci World J 2013:940153. doi: 10.1155/2013/940153 Google Scholar
  75. 75.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  76. 76.
    Mohammad AW, Hilal N, Pei LY, Amin INHM, Raslan R (2011) Atomic force microscopy as a tool for asymmetric polymeric membrane characterization. Sains Malays 40:237–244Google Scholar
  77. 77.
    Zhang G (2015) Nanoscale surface modification for enhanced biosensing: a journey toward better glucose monitoring. Springer, BerlinCrossRefGoogle Scholar
  78. 78.
    Kavitha B, Prabakar K, Kumar KS, Srinivasu D, Srinivas CH, Aswal VK, Siriguri V, Narsimlu N (2012) Spectroscopic studies of nano size crystalline conducting polyaniline. J Appl Chem 2(1):16–19Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Emanuel Airton de Oliveira Farias
    • 1
  • Silvania Siqueira Nogueira
    • 1
  • Aline Márcia de Oliveira Farias
    • 1
  • Monialine Sousa de Oliveira
    • 1
  • Maria de Fátima Cardoso Soares
    • 1
  • Helder Nunes da Cunha
    • 2
  • José Ribeiro dos Santos Junior
    • 3
  • Durcilene Alves da Silva
    • 1
  • Peter Eaton
    • 4
  • Carla Eiras
    • 5
    Email author return OK on get
  1. 1.Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRVUFPIParnaíbaBrazil
  2. 2.Departamento de Física, CCNUFPITeresinaBrazil
  3. 3.Grupo de BioeletroquímicaUniversidade Federal do PiauíTeresinaBrazil
  4. 4.LAQV-Requimte, Departamento de Química e BioquímicaFaculdade de Ciências da Universidade do PortoPortoPortugal
  5. 5.Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CTUFPITeresinaBrazil

Personalised recommendations