Skip to main content

Advertisement

Log in

Enhancement in the elongation, yield strength and magnetic properties of intermetallic FeCo alloy using spark plasma sintering

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Equiatomic FeCo alloys were densified using spark plasma sintering (SPS). Using a constant 50 MPa pressure, the sintering temperature and dwell times for the SPS process were optimised for different heating rates (50, 100, 300 °C min−1). All samples used in this optimisation process were analysed in terms of their mechanical and magnetic properties. Interestingly, for all heating rates, FeCo samples sintered at the highest temperatures (1100 °C) without dwelling exhibited an increased tensile yield strength combined with an improvement in the elongation to fracture. This occurred despite the microstructural coarsening observed at this sintering temperature, which decreased the ultimate tensile strength. Improved grain boundary bonding in the samples sintered at the highest sintering temperature led to a suppression of intergranular fracture, something previously considered to be inherent to all equiatomic FeCo alloy structures. An optimum combination of mechanical (ultimate tensile strength = 400 MPa, yield strength = 340 MPa and strain to failure = 3.5%) and magnetic (saturation induction (B sat) of 2.39 T and coercivity (Hc) of 612 A m−1) properties was achieved by sintering to 1100 °C using a relatively slow heating rate of 50 °C min−1 with no dwell time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sundar RS, Deevi SC (2005) Soft magnetic FeCo alloys: alloy development, processing, and properties. Int Mater Rev 50(3):157–192. doi:10.1179/174328005x14339

    Article  Google Scholar 

  2. Sourmail T (2005) Near equiatomic FeCo alloys: constitution, mechanical and magnetic properties. Prog Mater Sci 50(7):816–880. doi:10.1016/j.pmatsci.2005.04.001

    Article  Google Scholar 

  3. Zhao L, Baker I, George EP (1993) Room temperature fracture of FeCo. In: Materials research society symposium proceedings, vol 288. doi:10.1557/PROC-288-501

  4. Zhao L, Baker I (1994) The effect of grain size and Fe: Co ratio on the room temperature yielding of FeCo. Acta Metall Mater 42(6):1953–1958. doi:10.1016/0956-7151(94)90020-5

    Article  Google Scholar 

  5. Jordan KR, Stoloff NS (1969) Plastic deformation and fracture in FeCo-2%V. Trans Metal Soc AIME 245:2027–2034

    Google Scholar 

  6. Sundar R, Deevi S (2004) Influence of alloying elements on the mechanical properties of FeCo–V alloys. Intermetallics 12:7–9. doi:10.1016/j.intermet.2004.02.022

    Google Scholar 

  7. Chen CW (1961) Metallurgy and magnetic properties of an Fe–Co–V Alloy. J Appl Phys 32(3):S348–S355. doi:10.1063/1.2000465

    Article  Google Scholar 

  8. Kawahara K (1983) Effect of carbon on mechanical properties in Fe0.5 Co0.5 alloys. J Mater Sci 18:2047–2055. doi:10.1007/BF00554997

    Article  Google Scholar 

  9. George E, Gubbi AN, Baker I, Robertson L (2002) Mechanical properties of soft magnetic FeCo alloys. Mater Sci Eng A 329–331:325–333. doi:10.1016/S0921-5093(01)01594-5

    Article  Google Scholar 

  10. Thornburg DR (1969) High-strength high-ductility Cobalt–Iron alloys. J Appl Phys 40(3):1579–1580. doi:10.1063/1.1657779

    Article  Google Scholar 

  11. Pitt CD, Rawlings RD (1983) Lüders strain and ductility of ordered Fe–Co–2V and Fe–Co–V–Ni alloys. Met Sci 17(6):261–266. doi:10.1179/030634583790420835

    Article  Google Scholar 

  12. Sundar RS, Deevi SC (2004) Effect of heat-treatment on the room temperature ductility of an ordered intermetallic Fe–Co–V alloy. Mater Sci Eng A 369:1–2. doi:10.1016/j.msea.2003.11.004

    Article  Google Scholar 

  13. Sundar RS, Deevi SC, Reddy BV (2005) High strength FeCo–V intermetallic alloy: electrical and magnetic properties. J Mater Res 20(6):1515–1522

    Article  Google Scholar 

  14. Fingers RT (1998) Creep behavior of thin laminates of FeCo alloys for use in switched reluctance motors and generators. Ph.D. thesis, Virginia Polytechnic Institute

  15. Rutz HG, Hanejko FG, Ellis GW, Riverton NJ (1997) The manufacture of electromagnetic components by the powder metallurgy process. In: International conference on powder metallurgy and particulate materials, June 29–July 2, Chicago, IL USA, 1

  16. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777. doi:10.1007/s10853-006-6555-2

    Article  Google Scholar 

  17. Mamedov V (2002) Spark plasma sintering as advanced PM sintering method. Powder Metall 45(4):322–328. doi:10.1179/003258902225007041

    Article  Google Scholar 

  18. Silva A, Wendhausen P, Machado R, Ristow W (2007) Magnetic properties obtained for Fe-50Co alloy produced by MIM with elemental powders. Mater Sci Forum 534–536:1353–1356. doi:10.4028/www.scientific.net/MSF.534-536.1353

    Article  Google Scholar 

  19. Sun Y, Haley J, Kulkarni K, Aindow M, Lavernia EJ (2015) Influence of electric current on microstructure evolution in Ti/Al and Ti/TiAl 3 during spark plasma sintering. J Alloys Compd 648:1097–1103. doi:10.1016/j.jallcom.2015.07.079

    Article  Google Scholar 

  20. Sun Y, Kulkarni K, Sachdev AK, Lavernia EJ (2014) Synthesis of γ-TiAl by reactive spark plasma sintering of cryomilled Ti and Al powder blend, part I: influence of processing and microstructural evolution. Metall Mater Trans A 45(6):2750–2758. doi:10.1007/s11661-014-2215-3

    Article  Google Scholar 

  21. Kulkarni KN, Sun Y, Sachdev AK, Lavernia E (2013) Field-activated sintering of blended elemental γ-TiAl powder compacts: porosity analysis and growth kinetics of Al 3 Ti. Scr Mater 68(11):841–844. doi:10.1016/j.scriptamat.2013.02.004

    Article  Google Scholar 

  22. Mani MK, Viola G, Reece MJ, Hall JP, Evans SL (2013) Structural and magnetic characterization of spark plasma sintered Fe-50Co alloys. In: MRS proceedings, vol 1516. doi:10.1557/opl.2012.1669

  23. Räthel J, Herrmann M, Beckert W (2009) Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST). J Eur Ceram Soc 29(8):1419–1425. doi:10.1016/j.jeurceramsoc.2008.09.015

    Article  Google Scholar 

  24. Dieter George E (1986) Mechanical metallurgy, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  25. Roura P, Costa J, Farjas J (2002) Is sintering enhanced under non-isothermal conditions? Mater Sci Eng A 337(1):248–253. doi:10.1016/S0921-5093(02)00029-1

    Article  Google Scholar 

  26. Hungría T, Galy J, Castro A (2009) Spark plasma sintering as a useful technique to the nanostructuration of piezo-ferroelectric materials. Adv Eng Mater 11(8):615–631. doi:10.1002/adem.200900052

    Article  Google Scholar 

  27. Hu K, Li X, Qu S, Li Y (2013) Effect of heating rate on densification and grain growth during spark plasma sintering of 93W–5.6 Ni–1.4 Fe heavy alloys. Metall Mater Trans A 44(9):4323–4336. doi:10.1007/s11661-013-1789-5

    Article  Google Scholar 

  28. Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16(7):830–849. doi:10.1002/adem.201300409

    Article  Google Scholar 

  29. Albaaji AJ, Castle EG, Reece MJ, Hall JP, Evans SL (2016) Mechanical and magnetic properties of spark plasma sintered soft magnetic FeCo alloy reinforced by carbon nanotubes. J Mater Res 31(21):3448–3458. doi:10.1557/jmr.2016.372

    Article  Google Scholar 

  30. Munir ZA, Quach DV, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94(1):1–19. doi:10.1111/j.1551-2916.2010.04210.x

    Article  Google Scholar 

  31. Krein R, Friak M, Neugebauer J, Palm M, Heilmaier M (2010) L2 1-ordered Fe–Al–Ti alloys. Intermetallics 18(7):1360–1364. doi:10.1016/j.intermet.2009.12.036

    Article  Google Scholar 

  32. Baker I, Schulson EM (1989) On grain boundary disorder and the tensile ductility of polycrystalline ordered alloys: a hypothesis. Scr Metall 23(3):345–348. doi:10.1016/0036-9748(89)90379-7

    Article  Google Scholar 

  33. Albaaji AJ, Castle EG, Reece MJ, Hall JP, Evans SL (2016) Synthesis and properties of graphene and graphene/carbon nanotube-reinforced soft magnetic FeCo alloy composites by spark plasma sintering. J Mater Sci 51(16):7624–7635. doi:10.1007/s10853-016-0041-2

    Article  Google Scholar 

  34. Schulson EM, Barker DR (1983) A brittle to ductile transition in NiAl of a critical grain size. Scr Metall 17(4):519–522. doi:10.1016/0036-9748(83)90344-7

    Article  Google Scholar 

  35. Clegg DW, Buckley RA (1973) The disorder → order transformation in Iron–Cobalt-based alloys. Met Sci 7(1):48–54. doi:10.1179/030634573790445541

    Article  Google Scholar 

  36. Stoloff NS, Davies RG (1964) The plastic deformation of ordered FeCo and Fe3Al alloys. Acta Metall 12:473–485. doi:10.1016/0001-6160(64)90019-7

    Article  Google Scholar 

  37. Liu CT, Stiegler JO (1984) Ductile ordered intermetallic alloys. Science 226:636–643

    Article  Google Scholar 

  38. Xie G, Ohashi O, Yoshioka T, Song M, Mitsuishi K, Yasuda H, Furuya K, Noda T (2001) Effect of interface behavior between particles on properties of pure Al powder compacts by spark plasma sintering. Mater Trans 42(9):1846–1849. doi:10.2320/matertrans.42.1846

    Article  Google Scholar 

  39. Randall M (1996) German sintering theory and practice. Wiley, New York

    Google Scholar 

  40. Zhang Zhao-Hui, Wang Fu-Chi, Lin Wang S-KL (2008) Ultrafine-grained copper prepared by spark plasma sintering process. Mater Sci Eng A 476:1–2. doi:10.1016/j.msea.2007.04.107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar J. Albaaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albaaji, A.J., Castle, E.G., Reece, M.J. et al. Enhancement in the elongation, yield strength and magnetic properties of intermetallic FeCo alloy using spark plasma sintering. J Mater Sci 52, 13284–13295 (2017). https://doi.org/10.1007/s10853-017-1435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1435-5

Keywords

Navigation