Skip to main content
Log in

Low-cost, fast and easy production of germanium nanostructures and interfacial electron transfer dynamics of BODIPY–germanium nanostructure system

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Germanium nanostructures are prepared by electrochemical etching of n-type Sb-doped (100) oriented germanium (Ge) substrates with resistivity of 0.01 Ω cm. Ge substrates are etched in an electrochemical double cell containing hydrofluoric acid and ethanol solution at room temperature. Although the use of illumination source is essential for etching of an n-type semiconductor material, the influence of illumination source type on the germanium surface morphology has not yet been investigated. In this work, the illumination effect is studied by halogen lamp, white LED, 470- and 405-nm pulsed diode laser. It is demonstrated that different Ge surface morphologies such as nanocone, nanorod, nanoplate and nanopyramid are obtained using different illumination source. The current density, anodization time and pulsed laser power density effects on Ge nanopyramid are investigated in order to optimize anodization conditions. The most uniform and continuous Ge nanopyramid array is obtained at the current density of 30 mA/cm2 for 45 min under cathode side illumination with 470-nm pulsed diode laser. It is observed that the nanostructured Ge surfaces exhibit a broad photoluminescence band between 400 and 650 nm. Time-resolved fluorescence spectroscopy studies of electron transfer process between BODIPY dye and Ge nanostructures are reported. The obtained fluorescence lifetime data are analyzed in the light of the Marcus electron transfer theory to determine the conduction band energy level of nanostructured germanium substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Oh J, Yuan HC, Branz HM (2012) An 18.2% efficient black silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7:743–748

    Article  Google Scholar 

  2. Sainato M, Strambini LM, Rella S, Mazzotta E, Barillaro G (2015) Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal assisted etching. ACS Appl Mater Interfaces 7:7136–7145

    Article  Google Scholar 

  3. Chiappini C, Rosa ED, Martinez JO, Liu X, Steele J, Stevens MM, Tasciotti E (2015) Biodegradable silicon nanoneedles delivering nucleic acids intra cellularly induce localized in vivo neovascularization. Nat Mater 14:532–539

    Article  Google Scholar 

  4. Cunin F, Schmedake TA, Link JR, Li YY, Koh J, Bhatia SN, Sailor MJ (2002) Biomolecular screening with encoded porous-silicon photonic crystals. Nat Mater 1:39–41

    Article  Google Scholar 

  5. Ng WL, Lourenço MA, Gwilliam RM, Ledain S, Shao G, Homewood KP (2001) An efficient room-temperature silicon-based light-emitting diode. Nature 410:192–194

    Article  Google Scholar 

  6. Wang W, Favors Z, Ionescu R, Ye R, Bay HH, Ozkan M, Ozkan CS (2015) Monodisperse porous silicon spheres as anode materials for lithium ion batteries. Sci Rep 5:8781–8786

    Article  Google Scholar 

  7. Kumar RR, Rao KN, Phani AR (2011) Growth and characterization of germanium nanowires on a flexible aluminum substrate by electron beam evaporation. Appl Nanosci 1(4):211–217

    Article  Google Scholar 

  8. Kolibal M, Matlocha T, Vystavel T, Sikola T (2011) Low energy focused ion beam milling of silicon and germanium nanostructures. Nanotechnology 22:105304–105311

    Article  Google Scholar 

  9. Pchelyakova OP, Bolkhovityanova YB, Dvurechenskiia AV, Nikiforova AI, Yakimova AI, Voigtlander B (2015) Molecular beam epitaxy of silicon–germanium nanostructures. Thin Solid Films 367:75–84

    Article  Google Scholar 

  10. Dailey JW, Taraci J, Clement T, Smith DJ, Drucker J, Picraux ST (2004) Vapor liquid solid growth of germanium nanostructures on silicon. J Appl Phys 96:7556–7567

    Article  Google Scholar 

  11. Seo MA, Kim DS, Kim HS, Choi DS, Jeoung SC (2006) Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases. Opt Express 14(11):4908–4914

    Article  Google Scholar 

  12. Flamand G, Poortmans J, Dessein K (2005) Formation of porous Ge using HF-based electrolytes. Phys Status Solidi (c) 2:3243–3247

    Article  Google Scholar 

  13. Fang C, Föll H, Carstensen J (2006) Electrochemical pore etching in germanium. J Electroanal Chem 589:259–288

    Article  Google Scholar 

  14. Kartopu G, Sapelkin AV, Karavanskii VA, Serincan U, Turan R (2008) Structural and optical properties of porous nanocrystalline Ge. J Appl Phys 103:113518–113524

    Article  Google Scholar 

  15. Rojas EG, Hensen J, Carstensen J, Föll H, Brendel R (2011) Porous germanium layers by electrochemical etching for layer transfer processes of high-efficiency multi-junction solar cells. ECS Trans 33(17):95–102

    Article  Google Scholar 

  16. Tutashkonkoa S, Boucherif A, Nychyporuk T, Kaminski-Cachopo A, Arès R, Lemiti M, Aimez V (2013) Mesoporous germanium formed by bipolar electrochemical etching. Electrochim Acta 88:256–262

    Article  Google Scholar 

  17. Tutashkonko S, Alekseev S, Nychyporuk T (2015) Nanoscale morphology tuning of mesoporous Ge: electrochemical mechanisms. Electrochim Acta 180:545–554

    Article  Google Scholar 

  18. Liang D, Huo Y, Kang Y, Wang KX, Gu A, Tan M, Yu Z, Li S, Jia J, Bao X, Wang S, Yao Y, Wong HSP, Fan S, Cui Y, Harris JS (2012) Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays. Adv Energy Mater 2:1254–1260

    Article  Google Scholar 

  19. Han Q, Fu Y, Jin L, Zhao J, Xu Z, Fang F, Gao J, Yu W (2015) Germanium nanopyramid arrays showing near 100% absorption in the visible regime. Nano Res 8(7):2216–2222

    Article  Google Scholar 

  20. Riedel M, Müller B, Wintermantel E (2001) Protein adsorption and monocyte activation on germanium nanopyramids. Biomaterials 22:2307–2316

    Article  Google Scholar 

  21. Li X, Yang Z, Fu Y, Qiao L, Li D, Yue H, He D (2015) Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 9(2):1858–1867

    Article  Google Scholar 

  22. Hwang J, Jo C, Kim MG, Chun J, Lim E, Kim S, Jeong S, Kim Y, Lee J (2015) Mesoporous Ge/GeO2/carbon lithium-ion battery anodes with high capacity and high reversibility. ACS Nano 9(5):5299–5309

    Article  Google Scholar 

  23. Gao YQ, Marcus RA (2000) On the theory of electron transfer reactions at semiconductor/liquid interfaces. II. A free electron model. J Chem Phys 113:6351–6359

    Article  Google Scholar 

  24. Williams RM, Koeberg M, Lawson JM, An YZ, Rubin Y, Paddon-Row MN, Verhoeven JW (1996) Photoinduced electron transfer to C60 across extended 3- and 11-bond hydrocarbon bridges: creation of a long-lived charge-separated state. J Org Chem 61:5055–5062

    Article  Google Scholar 

  25. Darius K, Michael SF, Harry BG, Jay RW (2001) Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. J Phys Chem B 105:392–403

    Google Scholar 

  26. Vyas AD, Rana VA, Gadani DH (2011) Dielectric properties of mixtures of some rigid polar molecules with some primary. Indian J Pure Appl Phys 49:277–283

    Google Scholar 

  27. Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8:259–271

    Article  Google Scholar 

  28. Nepomnyashchii AB, Bard AJ (2012) Electrochemistry and electrogenerated chemiluminescence of BODIPY dyes. Acc Chem Res 45(11):1844–1853

    Article  Google Scholar 

  29. Porter LA, Choi HC, Ribbe AE, Buriak JM (2002) Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Lett 2:1067–1071

    Article  Google Scholar 

  30. Tvrdy K, Frantsuzovc PA, Kamat PV (2011) Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108:29–34

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by TUBITAK under Grant Number 114F451 and Karamanoğlu Mehmetbey University Research Fund under Grant Number 16-M-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabriye Acikgoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acikgoz, S., Yungevis, H., Özünal, E. et al. Low-cost, fast and easy production of germanium nanostructures and interfacial electron transfer dynamics of BODIPY–germanium nanostructure system. J Mater Sci 52, 13149–13162 (2017). https://doi.org/10.1007/s10853-017-1434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1434-6

Keywords

Navigation