Skip to main content
Log in

Microwave absorption characteristics of CH3NH3PbI3 perovskite/carbon nanotube composites

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The CH3NH3PbI3 (MAPbI3) and CH3NH3PbI3/carbon nanotube (MC) composite have been successfully synthesized by a facile in situ solution method, which are investigated as the microwave absorption materials. For the MAPbI3 particles, the minimum reflection loss is only −4.9 dB around 16.4 GHz due to the poor relative complex permittivity. Then, the relative complex permittivity of MC composites could be adjusted by changing the mass fraction of CNTs in composite, which is a vital role for the dielectric loss. The reflection loss of MC-5 composite (MAPbI3/CNT, 5:1 wt%) can be improved to 35.7 dB with thickness of 1.3 mm at 13.1 GHz. When the thickness is <3.0 mm, the microwave absorption bandwidth of MC-5 is 11.8 GHz (5.016.8 GHz) under the reflection loss lower than 20 dB. The quarter-wavelength (λ/4) matching model is used to discuss the microwave absorption mechanism of MC composites. These results indicate that MC-5 composite could be used as the microwave absorption materials with strong reflection loss, lightweight and broad bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cao MS, Wang XX, Cao WQ, Yuan J (2015) Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3:6589–6599

    Article  Google Scholar 

  2. Yang Y, Li M, Wu Y, Wang T, Choo ESG, Ding J, Zong BY, Yang ZH, Xue JM (2016) Nanoscaled self-alignment of Fe3O4 nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding. Nanoscale 8:15989–15998

    Article  Google Scholar 

  3. Wen FS, Hou H, Xiang JY, Zhang XY, Su ZB, Yuan SJ, Liu ZY (2015) Fabrication of carbon encapsulated Co3O4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber. Carbon 89:372–377

    Article  Google Scholar 

  4. He B, Hou ZL, Zhang KL, Li J, Yin K, Feng S, Bi S (2017) Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J Mater Sci 52:8258–8267. doi:10.1007/s10853-017-1041-6

    Article  Google Scholar 

  5. Lv HL, Ji GB, Zhang HQ, Du YW (2015) Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance. RSC Adv 5:76836–76843

    Article  Google Scholar 

  6. Song WL, Guan XT, Fan LZ, Zhao YB, Cao WQ, Wang CY, Cao MS (2016) Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100:109–117

    Article  Google Scholar 

  7. Zhao B, Guo XQ, Zhao WY, Deng JS, Shao G, Fan BB, Bai ZY, Zhang R (2016) Yolk-shell Ni@SnO2 composites with a designable interspace to improve electromagnetic wave absorption properties. ACS Appl Mater Interfaces 8:28917–28925

    Article  Google Scholar 

  8. Che RC, Peng ML, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405

    Article  Google Scholar 

  9. Qing SW, Jian WL, Guang SW, Shao FC, Shu HY (2016) A surfactant-free route to synthesize BaxSr1−xTiO3 nanoparticles at room temperature, their dielectric and microwave absorption properties. Sci China Mater 59:609–617

    Google Scholar 

  10. Liu X, Wang LS, Ma YT, Zheng HF, Lin L, Zhang QF, Chen YZ, Qiu YL, Peng DL (2017) Enhanced microwave absorption properties by tuning cation deficiency of perovskite oxides of two-dimensional LaFeO3/C composite in X-band. ACS Appl Mater Interfaces 9:7601–7610

    Article  Google Scholar 

  11. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692–3696

    Article  Google Scholar 

  12. Mahale P, Kore BP, Mukherjee S, Pavan MS, De C, Ghara S, Sundaresan A, Pandey A, Guru Row TN, Sarma DD (2016) Is CH3NH3PbI3 polar? J Phys Chem Lett 7:2412–2419

    Article  Google Scholar 

  13. Cui J, Chen C, Han JB, Cao K, Zhang WJ, Shen Y, Wang MK (2016) Surface plasmon resonance effect in inverted perovskite solar cells. Adv Sci 3:1500312

    Article  Google Scholar 

  14. Yoo EJ, Lyu M, Yun JH, Kang CJ, Choi YJ, Wang L (2015) Resistive switching behavior in organic–inorganic hybrid CH3NH3PbI3 − xClx perovskite for resistive random access memory devices. Adv Mater 27:6170–6175

    Article  Google Scholar 

  15. Su L, Zhao ZX, Li HY, Yuan J, Wang ZL, Cao GZ, Zhu G (2015) High-performance organolead halide perovskite-based self-powered triboelectric photodetector. ACS Nano 9:11310–11316

    Article  Google Scholar 

  16. Pathak NK, Sharma RP (2015) Study of broadband tunable properties of surface plasmon resonances of noble metal nanoparticles using mie scattering theory: plasmonic perovskite interaction. Plasmonics 11:713–719

    Article  Google Scholar 

  17. Jia Y, Kerner RA, Grede AJ, Brigeman AN, Rand BP, Giebink NC (2016) Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett 16:4624–4629

    Article  Google Scholar 

  18. Wang LN, Jia XL, Li YF, Yang F, Zhang LQ, Liu LP, Ren X, Yang HT (2014) Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J Mater Chem A 2:14940–14946

    Article  Google Scholar 

  19. Duzynska A, Swiniarski M, Wroblewska A, Lapinska A, Zeranska K, Judek J, Zdrojek M (2016) Phonon properties in different types of single-walled carbon nanotube thin films probed by Raman spectroscopy. Carbon 105:377–386

    Article  Google Scholar 

  20. Niven JF, Johnson MB, Juckes SM, White MA, Alvarez NT, Shanov V (2016) Influence of annealing on thermal and electrical properties of carbon nanotube yarns. Carbon 99:485–490

    Article  Google Scholar 

  21. Joshi A, Ramachandran CN (2016) Charge transport and optical properties of the complexes of indigo wrapped over carbon nanotubes. Phys Chem Chem Phys 18:14040–14045

    Article  Google Scholar 

  22. Zheng Z, Xu B, Huang L, He L, Ni XM (2008) Novel composite of Co/carbon nanotubes: synthesis, magnetism and microwave absorption properties. Solid State Sci 10:316–320

    Article  Google Scholar 

  23. Che RC, Zhi CY, Liang CY, Zhou XG (2006) Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl Phys Lett 88:033105

    Article  Google Scholar 

  24. Wen FS, Zhang F, Liu ZY (2011) Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J Phys Chem C 115:14025–14030

    Article  Google Scholar 

  25. Deng LJ, Han MG (2007) Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl Phys Lett 91:023119

    Article  Google Scholar 

  26. Zhou Q, Jiao DB, Fu KL, Wu XJ, Chen YS, Lu JX, Yang SE (2016) Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells. Sol Energy 123:51–56

    Article  Google Scholar 

  27. Soufiani AM, Huang F, Reece P, Sheng R, Ho-Baillie A, Green MA (2015) Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites. Appl Phys Lett 107:231902

    Article  Google Scholar 

  28. Edwards ER, Antunes EF, Botelho EC, Baldan MR, Corat EJ (2011) Evaluation of residual iron in carbon nanotubes purified by acid treatments. Appl Surf Sci 258:641–648

    Article  Google Scholar 

  29. Xiao YM, Han GY, Li YP, Li MY, Chang YZ, Wu JH (2014) Preparation of high performance perovskite-sensitized nanoporous titanium dioxide photoanodes by in situ method for use in perovskite solar cells. J Mater Chem A 2:16531–16537

    Article  Google Scholar 

  30. He MH, Chen YN, Liu H, Wang JL, Fang XS, Liang ZQ (2015) Chemical decoration of CH3NH3PbI3 perovskites with graphene oxides for photodetector applications. Chem Commun 51:9659–9661

    Article  Google Scholar 

  31. Dintcheva NT, Arrigo R, Teresi R, Megna B, Gambarotti C, Marullo S, D’Anna F (2016) Tunable radical scavenging activity of carbon nanotubes through sonication. Carbon 107:240–247

    Article  Google Scholar 

  32. Kong WG, Rahimi-Iman A, Bi G, Dai XS, Wu HZ (2016) Oxygen intercalation induced by photocatalysis on the surface of hybrid lead halide perovskites. J Phys Chem C 120:7606–7611

    Article  Google Scholar 

  33. Quarti C, Grancini G, Mosconi E, Bruno P, Ball JM, Lee MM, Snaith HJ, Petrozza A, Angelis FD (2014) The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J Phys Chem Lett 5:279–284

    Article  Google Scholar 

  34. Fang JJ, Zha WK, Kang M, Lu SH, Cui L, Li SF (2013) Microwave absorption response of nickel/graphene nanocomposites prepared by electrodeposition. J Mater Sci 48:8060–8067. doi:10.1007/s10853-013-7600-6

    Article  Google Scholar 

  35. Wang BC, Wei JQ, Qiao L, Wang T, Li FS (2012) Influence of the interface reflections on the microwave reflection loss for carbonyl iron/paraffin composite backed by a perfect conduction plate. J Magn Magn Mater 324:761–765

    Article  Google Scholar 

  36. Wang BC, Wei JQ, Qiao L, Yang Y, Li FS (2011) Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J Magn Magn Mater 323:1101–1103

    Article  Google Scholar 

  37. Kang Y, Chu ZY, Zhang DJ, Li GY, Jiang ZH, Cheng HF, Li XD (2013) Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 61:200–208

    Article  Google Scholar 

  38. Wang YF, Chen DL, Yin X, Xu P, Wu F, He M (2015) Hybrid of MoS(2) and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 7:26226–26234

    Article  Google Scholar 

  39. Tian CH, Du YC, Xu P, Qiang R, Wang Y, Ding D, Xue JL, Ma J, Zhao HT, Han XJ (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7:20090–20099

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (51571172, 51271214, 51571171, 51672240, 11404280), Natural Science Foundation for Distinguished Young Scholars of Hebei Province (E2017203095), Natural Science Foundation of Hebei Province (Grant No. E2014203144, A2015203337), Science Foundation for the Excellent Youth Scholars from Universities and Colleges of Hebei Province (YQ2014009), Research Program of the College Science and Technology of Hebei Province (ZD2017083, QN2014047), Graduate Innovation Fund (CXZZSS2017055, 2017XJSS044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congpu Mu or Fusheng Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Mu, C., Xiang, J. et al. Microwave absorption characteristics of CH3NH3PbI3 perovskite/carbon nanotube composites. J Mater Sci 52, 13023–13032 (2017). https://doi.org/10.1007/s10853-017-1426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1426-6

Keywords

Navigation