Skip to main content
Log in

Band gap reduction and redshift of lattice vibrational spectra in Nb and Fe co-doped PLZT

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nb and Fe co-doped PLZT (Pb0.97La0.02(Zr0.52Ti0.48)1−2x (Nb0.5Fe0.5)2x O3 for x = 0.00, 0.02, 0.04, 0.06 and 0.08) samples have been prepared using sol–gel method. X-ray diffraction (XRD) and Raman spectroscopy studies confirmed that the samples are single phase even for the highest tested doping of 8 mol% of Nb and Fe. Incorporation of Nb and Fe atoms into PLZT lattice has been confirmed by XRD study where a systematic peak shift has been observed with increasing dopant concentration. The lattice parameters are found to decrease gradually with increase in Nb and Fe contents. From Raman spectroscopic investigation, redshift of several modes has been observed. Rietveld refinement has been performed to correlate XRD results with the fitting of Raman spectra. A total of 14 distinguished modes have been identified by de-convolution of Raman spectra, and they are in good agreement with the theoretically calculated modes for PbTiO3 and also with those reported on PZT and PLZT previously. The Burstein–Moss shift of absorption edge has been observed by diffuse reflectance spectroscopy experiment, and the analysis shows change in band gap from 3.21 eV (for x = 0.00) to 2.59 eV (for x = 0.08). The underlying mechanisms and the observed electronic behavior have been confirmed and analyzed by photoluminescence study which revealed several transitions and supported the effect of Nb and Fe co-doping as observed from XRD and Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ahart M, Somayazulu M, Cohen RE et al (2008) Origin of morphotropic phase boundaries in ferroelectrics. Nature 451:545–548

    Article  Google Scholar 

  2. Chen HD, Udayakumar KR, Gaskey CJ, Cross LE (1995) Electrical properties’ maxima in thin films of the lead zirconate–lead titanate solid solution system. Appl Phys Lett 67:3411–3413

    Article  Google Scholar 

  3. Bouzid A, Bourim EM, Gabbay M, Fantozzi G (2005) PZT phase diagram determination by measurement of elastic moduli. J Eur Ceram Soc 25:3213–3221

    Article  Google Scholar 

  4. Baik S, Lee SM (1994) R-curve behaviour of PZT ceramics near the morphotropic phase boundary. J Mater Sci 29:6115–6122. doi:10.1007/BF00354550

    Article  Google Scholar 

  5. Bell AJ (2006) Factors influencing the piezoelectric behaviour of PZT and other “morphotropic phase boundary” ferroelectrics. J Mater Sci 41:13–25. doi:10.1007/s10853-005-5913-9

    Article  Google Scholar 

  6. Scott JF (2007) Data storage. Multiferroic memories. Nat Mater 6:256–257

    Article  Google Scholar 

  7. Xu B, Yin KB, Lin J et al (2009) Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3. Phys Rev B 79:134109-1–134109-5

    Google Scholar 

  8. Kleebe H-J, Lauterbach S, Silvestroni L, Kungl H, Hoffmann MJ, Erdem E, Eichel Rd-A (2009) Formation of magnetic grains in ferroelectric Pb[Zr0.6Ti0.4]O3 ceramics doped with Fe3+ above the solubility limit. Appl Phys Lett 94:142901-1–142901-3

    Article  Google Scholar 

  9. Zhou J-p, He H-c, Shi Z, Liu G, Nan C-W (2006) Dielectric, magnetic, and magnetoelectric properties of laminated PbZr0.52Ti0.48O3/CoFe2O4 composite ceramics. J Appl Phys 100:094106-1–094106-6

    Google Scholar 

  10. Amonpattaratkit P, Jantaratana P, Ananta S (2015) Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe0.5Nb0.5)O3-based ceramics. J Magn Magn Mater 389:95–100

    Article  Google Scholar 

  11. Lisnevskaya IV, Bobrova IA, Lupeiko TG, Agamirzoeva MR, Myagkaya KV (2016) Y3Fe5O12/Na, Bi, Sr-doped PZT particulate magnetoelectric composites. J Magn Magn Mater 405:62–65

    Article  Google Scholar 

  12. Zhai J, Cai N, Shi Z, Lin Y, Nan C-W (2004) Magnetic-dielectric properties of NiFe2O4/PZT particulate composites. J Phys D Appl Phys 37:823–827

    Article  Google Scholar 

  13. Song Y, Da Pan LXu, Liu B, Volinsky AA, Zhang S (2016) Enhanced magnetoelectric efficiency of the Tb1−x Dy x Fe2−y /Pb(Zr, Ti)O3 cylinder multi-electrode composites. Mater Des 90:753–756

    Article  Google Scholar 

  14. Wang J, Wu X, Deng C, Zhu K, Qiu J (2016) The effect of LaNiO3 thickness on the magnetoelectric response of Pb(Zr0.52Ti0.48)O3 film-on-CoFe2O4 ceramic composites. J Mater Sci 52:541–549. doi:10.1007/s10853-016-0352-3

    Article  Google Scholar 

  15. Schiemer JA, Lascu I, Harrison RJ et al (2016) Elastic and anelastic relaxation behaviour of perovskite multiferroics I: PbZr0.53Ti0.47O3 (PZT)–PbFe0.5Nb0.5O3 (PFN). J Mater Sci 51:10727–10760. doi:10.1007/s10853-016-0280-2

    Article  Google Scholar 

  16. Schiemer JA, Lascu I, Harrison RJ et al (2017) Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr0.53Ti0.47O3 (PZT)–PbFe0.5Ta0.5O3 (PFT). J Mater Sci 52:285–304. doi:10.1007/s10853-016-0330-9

    Article  Google Scholar 

  17. Schiemer J, Carpenter MA, Evans DM et al (2014) Studies of the room-temperature multiferroic Pb(Fe0.5Ta0.5)0.4(Zr0.53Ti0.47)0.6O3: resonant ultrasound spectroscopy, dielectric, and magnetic phenomena. Adv Funct Mater 24:2993–3002

    Article  Google Scholar 

  18. Lima KCV, Filho AGS, Ayala AP, Filho J, Mendes Freire PTC, Melo FEA, Araújo EB, Eiras JA (2001) Raman study of morphotropic phase boundary in PbZr1−x Ti x O3 at low temperatures. Phys Rev B 63:184105-1–184105-5

    Article  Google Scholar 

  19. Rouquette J, Haines J, Bornand V, Pintard M, Papet Ph, Astier R, Léger JM, Gorelli F (2002) Transition to a cubic phase with symmetry-breaking disorder in PbZr0.52Ti0.48O3 at high pressure. Phys Rev B 65:214102-1–214102-4

    Article  Google Scholar 

  20. Haines J, Rouquette J, Bornand V, Pintard M, Papet P, Gorelli FA (2003) Raman scattering studies at high pressure and low temperature: technique and application to the piezoelectric material PbZr0.52Ti0.48O3. J Raman Spectrosc 34:519–523

    Article  Google Scholar 

  21. Sani A, Noheda B, Kornev IA, Bellaiche L, Bouvier P, Kreisel J (2004) High-pressure phases in highly piezoelectric PbZr0.52Ti0.48O3. Phys Rev B 69:020105-1–020105-4. doi:10.1103/PhysRevB.69.020105

    Article  Google Scholar 

  22. Osada M, Nishida K, Wada S, Okamoto S, Ueno R, Funakubo H, Katoda T (2005) Domain distributions in tetragonal Pb(Zr, Ti)O3 thin films probed by polarized Raman spectroscopy. Appl Phys Lett 87:232902-1–232902-3

    Article  Google Scholar 

  23. Efimov VV, Efimova EA, Iakoubovskii K et al (2006) EXAFS, X-ray diffraction and Raman studies of (Pb1−x La x )(Zr0.65Ti0.35)O3 (x = 0.04 and 0.09) ceramics irradiated by high-current pulsed electron beam. J Phys Chem Solids 67:2007–2012

    Article  Google Scholar 

  24. Rouquette J, Haines J, Bornand V, Pintard M, Papet P, Sauvajol JL (2006) Use of resonance Raman spectroscopy to study the phase diagram of PbZr0.52Ti0.48O3. Phys Rev B 73:224118-1–224118-5

    Article  Google Scholar 

  25. Zhang Y, Cheng X, Zhang S (2007) In-situ Raman spectroscopic study of domain switching of PLZT ceramics. Appl Phys A 89:685–693

    Article  Google Scholar 

  26. Shannigrahi SR, Tripathy S (2007) Micro-Raman spectroscopic investigation of rare earth-modified lead zirconate titanate ceramics. Ceram Int 33:595–600

    Article  Google Scholar 

  27. Buixaderas E, Gregora I, Kamba S, Petzelt J, Kosec M (2008) Raman spectroscopy and effective dielectric function in PLZT x/40/60. J Phys: Condens Matter 20:345229-1–345229-10

    Google Scholar 

  28. Yang F-J, Cheng X, Zhou Z-D, Zhang Y (2009) An analysis of domain reorientation in PLZT ceramics by in situ Raman spectroscopy. J Appl Phys 106:114115-1–114115-5

    Google Scholar 

  29. Li J-F, Zhu Z-X, Lai F-P (2010) Thickness-dependent phase transition and piezoelectric response in textured Nb-doped Pb(Zr0.52Ti0.48)O3 thin films. J Phys Chem C 114:17796–17801

    Article  Google Scholar 

  30. Freire JD, Katiyar RS (1988) Lattice dynamics of crystals with tetragonal BaTiO3 structure. Phys Rev B 37:2074–2085

    Article  Google Scholar 

  31. Hermet P, Veithen M, Ghosez P (2009) Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory. J Phys: Condens Matter 21:215901-1–215901-10

    Google Scholar 

  32. Foster CM, Li Z, Grimsditch M, Chan SK, Lam DJ (1993) Anharmonicity of the lowest-frequency A 1(TO) phonon in PbTiO3. Phys Rev B 48:10160–10167

    Article  Google Scholar 

  33. Fontana M, Idrissi H, Kugel G, Wojcik K (1991) Raman spectrum in PbTiO3 re-examined: dynamics of the soft phonon and the central peak. J Phys: Condens Matter 3:8695–8706

    Google Scholar 

  34. Buixaderas E, Bovtun V, Kempa M, Nuzhnyy D, Savinov M, Vanek P, Gregora I, Malic B (2016) Lattice dynamics and domain wall oscillations of morphotropic Pb(Zr, Ti)O3 ceramics. Phys Rev B 94:054315-1–054315-10

    Article  Google Scholar 

  35. Nagaraj B, Aggarwal S, Song TK, Sawhney T, Ramesh R (1999) Leakage current mechanisms in lead-based thin-film ferroelectric capacitors. Phys Rev B 59:16022–16027

    Article  Google Scholar 

  36. Durruthy-Rodríguez MD, Costa-Marrero J, Hernández-García M, Calderón-Piñar F, Yañez-Limón JM (2009) Photoluminescence in “hard” and “soft” ferroelectric ceramics. Appl Phys A 98:543–550

    Article  Google Scholar 

  37. Robertson J, Warren WL, Tuttle BA (1995) Band states and shallow hole traps in Pb(Zr, Ti)O3 ferroelectrics. J Appl Phys 77:3975–3980

    Article  Google Scholar 

  38. Ghasemifard M, Hosseini SM, Khorsand Zak A, Khorrami GH (2009) Microstructural and optical characterization of PZT nanopowder prepared at low temperature. Phys E 41:418–422

    Article  Google Scholar 

  39. Rodríguez-Aranda MC, Calderón-Piñar F, Hernández-Landaverde MA, Heiras J, Zamorano-Ulloa R, Ramírez-Rosales D, Yáñez-Limón JM (2016) Photoluminescence of sol–gel synthesized PZT powders. J Lumin 179:280–286

    Article  Google Scholar 

  40. Peter Y, Cardona M (2010) Fundamentals of semiconductors: physics and materials properties. Springer, Berlin. doi:10.1007/978-3-642-00710-1

    Google Scholar 

  41. Silva MS, Cilense M, Orhan E et al (2005) The nature of the photoluminescence in amorphized PZT. J Lumin 111:205–213

    Article  Google Scholar 

  42. Anicete-Santos M, Silva MS, Orhan E, Góes MS, Zaghete MA, Paiva-Santos CO, Pizani PS, Cilense M, Varela JA, Longo E (2007) Contribution of structural order–disorder to the room-temperature photoluminescence of lead zirconate titanate powders. J Lumin 127:689–695

    Article  Google Scholar 

  43. Eyraud L, Guiffard B, Lebrun L, Guyomar D (2006) Interpretation of the softening effect in PZT ceramics near the morphotropic phase boundary. Ferroelectrics 330:51–60

    Article  Google Scholar 

  44. Hernández-García M, Durruthy-Rodríguez MD, Costa-Marrero J, Calderón-Piñar F, Guerra JDS, Yañez-Limón JM (2014) Photoluminescence in Pb0.95Sr0.05(Zr1−x Ti x )1−y Cr y O3 ferroelectric ceramic system. J Appl Phys 116:043510-1–043510-6

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Japan Student Services Organization (JASSO), Shibaura Institute of Technology (SIT) under the Top Global University Project, Designed by Ministry of Education, Culture, Sports, Science and Technology in Japan and IIT Madras, India. The authors would like to acknowledge the support extended by Mr. Subhajit Nandy and Dr. Sudakar Chandran (Department of Physics, IIT Madras) in carrying out DRS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sethupathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Muralidhar, M., Sankaranarayanan, V. et al. Band gap reduction and redshift of lattice vibrational spectra in Nb and Fe co-doped PLZT. J Mater Sci 52, 13012–13022 (2017). https://doi.org/10.1007/s10853-017-1425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1425-7

Keywords

Navigation