Skip to main content
Log in

Curved nanotwinned structure in Ni induced by dynamic compression

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanotwinned metals exhibit many interesting deformation behavior when compared to nanocrystalline materials with similar characteristic length scale. In this study, the deformation behavior of a nanotwinned Ni produced with a Ni-carbonyl chemical vapor deposition process was investigated via split Hopkinson pressure bar compression testing for strain rates ranging from 200 to 4100 s−1. This report will focus on the observation and analysis of an interesting microstructure formed as a result of the dynamic deformation; the collective curvature of the twin boundaries that makes up the nanotwinned structure. Furthermore, the curved twin boundaries tend to remain parallel to each other despite the introduction of curve. It is proposed that the formation of such a microstructure via dynamic deformation is likely a result of dislocation interactions with the twin boundaries forming steps made up of incoherent twin boundaries. A curvature can be formed with a large number of these steps formed on any single twin boundaries. The activation of this unique mechanism is dependent on the high strain rates, whereas the extent of operation is dependent on the extent of plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lu L, Dao M, Zhu T, Li J (2009) Size dependence of rate-controlling deformation mechanisms in nanotwinned copper. Scr Mater 60(12):1062–1066. doi:10.1016/j.scriptamat.2008.12.039

    Article  Google Scholar 

  2. Lu K, Lu L, Suresh S (2009) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324(5925):349–352. doi:10.1126/science.1159610

    Article  Google Scholar 

  3. Chen XH, Lu L, Lu K (2011) Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins. Scr Mater 64(4):311–314. doi:10.1016/j.scriptamat.2010.10.015

    Article  Google Scholar 

  4. Lu L, Chen X, Huang X, Lu K (2009) Revealing the maximum strength in nanotwinned copper. Science 323(5914):607–610. doi:10.1126/science.1167641

    Article  Google Scholar 

  5. Lu L, Schwaiger R, Shan ZW, Dao M, Lu K, Suresh S (2005) Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater 53(7):2169–2179. doi:10.1016/j.actamat.2005.01.031

    Article  Google Scholar 

  6. Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51(17):5159–5172. doi:10.1016/S1359-6454(03)00365-3

    Article  Google Scholar 

  7. Dalla Torre F, Van Swygenhoven H, Victoria M (2002) Nanocrystalline electrodeposited Ni: microstructure and tensile properties. Acta Mater 50(15):3957–3970. doi:10.1016/S1359-6454(02)00198-2

    Article  Google Scholar 

  8. Humphrey RT, Jankowski AF (2011) Strain-rate sensitivity of strength in macro-to-micro-to-nano crystalline nickel. Surf Coat Technol 206(7):1845–1849. doi:10.1016/j.surfcoat.2011.08.010

    Article  Google Scholar 

  9. Chen C, Liu J, Wang Z (2012) Microstructure stability and evolution in CVD carbonyl Ni materials upon annealing—grain growth and detwinning process. Mater Sci Eng A 558:285–297. doi:10.1016/j.msea.2012.08.003

    Article  Google Scholar 

  10. Wu XL, Zhu YT (2008) Inverse grain-size effect on twinning in nanocrystalline Ni. Phys Rev Lett 101(2):025503. doi:10.1103/PhysRevLett.101.025503

    Article  Google Scholar 

  11. Gu P, Dao M, Zhu Y (2014) Strengthening at nanoscaled coherent twin boundary in fcc metals. Philos Mag 94(11):1249–1262. doi:10.1080/14786435.2014.885138

    Article  Google Scholar 

  12. Wang YB, Liao XZ, Zhao YH, Lavernia EJ, Ringer SP, Horita Z et al (2010) The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion. Mater Sci Eng A 527(18–19):4959–4966. doi:10.1016/j.msea.2010.04.036

    Article  Google Scholar 

  13. Wang YM, Sansoz F, LaGrange T, Ott RT, Marian J, Barbee TW et al (2013) Defective twin boundaries in nanotwinned metals. Nat Mater 12(8):697–702. doi:10.1038/nmat3646

    Article  Google Scholar 

  14. Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang JY et al (2010) Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater 58(6):2262–2270. doi:10.1016/j.actamat.2009.12.013

    Article  Google Scholar 

  15. Jin Z-H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H et al (2008) Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater 56(5):1126–1135. doi:10.1016/j.actamat.2007.11.020

    Article  Google Scholar 

  16. Cao Y, Wang YB, An XH, Liao XZ, Kawasaki M, Ringer SP et al (2015) Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins. Scr Mater 100:98–101. doi:10.1016/j.scriptamat.2015.01.001

    Article  Google Scholar 

  17. Ni S, Wang YB, Liao XZ, Figueiredo RB, Li HQ, Ringer SP et al (2012) The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials. Acta Mater 60(6–7):3181–3189. doi:10.1016/j.actamat.2012.02.026

    Article  Google Scholar 

  18. Bufford D, Liu Y, Wang J, Wang H, Zhang X (2014) In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat Commun 5:4864. doi:10.1038/ncomms5864

    Article  Google Scholar 

  19. Shabib I, Miller RE (2009) Deformation characteristics and stress–strain response of nanotwinned copper via molecular dynamics simulation. Acta Mater 57(15):4364–4373. doi:10.1016/j.actamat.2009.05.028

    Article  Google Scholar 

  20. Shute CJ, Myers BD, Xie S, Li S-Y, Barbee TW Jr., Hodge AM et al (2011) Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins. Acta Mater 59(11):4569–4577. doi:10.1016/j.actamat.2011.04.002

    Article  Google Scholar 

  21. Stukowski A, Albe K, Farkas D (2010) Nanotwinned fcc metals: strengthening versus softening mechanisms. Phys Rev B 82(22):224103. doi:10.1103/PhysRevB.82.224103

    Article  Google Scholar 

  22. Meyers MA (1994) Dynamic behavior of materials. Wiley, New York

    Book  Google Scholar 

  23. Dao M, Lu L, Shen YF, Suresh S (2006) Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater 54(20):5421–5432. doi:10.1016/j.actamat.2006.06.062

    Article  Google Scholar 

  24. Olmsted DL, Hector LG Jr., Curtin WA, Clifton RJ (2005) Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model Simul Mater Sci Eng 13(3):371–388. doi:10.1088/0965-0393/13/3/007

    Article  Google Scholar 

  25. Ye JC, Wang YM, Barbee TW, Hamza AV (2012) Orientation-dependent hardness and strain rate sensitivity in nanotwin copper. Appl Phys Lett 100(26):261912. doi:10.1063/1.4731242

    Article  Google Scholar 

  26. Zhu T, Gao H (2012) Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling. Scr Mater 66(11):843–848. doi:10.1016/j.scriptamat.2012.01.031

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to acknowledge the assistance of Mr. Sheng Huang of the Civil Engineering Department at the University of Toronto throughout this study. The financial support from NSERC of Canada (the Natural Science and Engineering Research Council of Canada) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. F. Kwan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwan, C.C.F., Wang, L., Xia, K. et al. Curved nanotwinned structure in Ni induced by dynamic compression. J Mater Sci 52, 13261–13270 (2017). https://doi.org/10.1007/s10853-017-1423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1423-9

Keywords

Navigation