Skip to main content
Log in

Ionic liquid-derived Co3O4/carbon nano-onions composite and its enhanced performance as anode for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a novel composite of Co3O4 nanoparticle and carbon nano-onions (CNOs) is synthesized by using ionic liquid as carbon and nitrogen source through a facile carbothermic reduction followed by low-temperature oxidation method. The SEM and HRTEM images reveal that the Co3O4 particles are homogenously embedded in the CNOs. Due to the unique nano-structure, the electrolyte contacts well with the active materials, leading to a better transfer of lithium ions. Moreover, the unique nano-structure not only buffers the volume changes but also facilitates the shuttling of electrons during the cycling process. As a result, the electrode made up of Co3O4/CNOs composite delivers favorable cycling performance (676 mAh g−1 after 200 cycles) and rate capability (557 mAh g−1 at the current of 1 C), showing a promising prospect for lithium-ion batteries as anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Cheng X-B, Zhang Q, Wang H-F, Tian G-L, Huang J-Q, Peng H-J, Zhao M-Q, Wei F (2015) Nitrogen-doped herringbone carbon nanofibers with large lattice spacings and abundant edges: catalytic growth and their applications in lithium ion batteries and oxygen reduction reactions. Catal Today 249:244–251

    Article  Google Scholar 

  2. Liu X, Wu Y, Yang Z, Pan F, Zhong X, Wang J, Gu L, Yu Y (2015) Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries. J Power Sources 293:799–805

    Article  Google Scholar 

  3. Li Y, Lv X, Lu J, Li J (2010) Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C 114(49):21770–21774

    Article  Google Scholar 

  4. Wu Y-P, Rahm E, Holze R (2003) Carbon anode materials for lithium ion batteries. J Power Sources 114(2):228–236

    Article  Google Scholar 

  5. Park MS, Wang GX, Kang YM, Wexler D, Dou SX, Liu HK (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem 119(5):764–767

    Article  Google Scholar 

  6. Gao S, Yang S, Shu J, Zhang S, Li Z, Jiang K (2008) Green fabrication of hierarchical CuO hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries. J Phys Chem C 112(49):19324–19328

    Article  Google Scholar 

  7. Cui Z-M, Jiang L-Y, Song W-G, Guo Y-G (2009) High-yield gas–liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem Mater 21(6):1162–1166

    Article  Google Scholar 

  8. Li D, Yang D, Zhu X, Jing D, Xia Y, Ji Q, Cai R, Li H, Che Y (2014) Simple pyrolysis of cobalt alginate fibres into Co3O4/C nano/microstructures for a high-performance lithium ion battery anode. J Mater Chem A 2(44):18761–18766

    Article  Google Scholar 

  9. Gou J, Xie S, Liu Y, Liu C (2016) Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode materials. Electrochim Acta 210:915–924

    Article  Google Scholar 

  10. Yan D, Zhang H, Chen L, Zhu G, Li S, Xu H, Yu A (2014) Biomorphic synthesis of mesoporous Co3O4 microtubules and their pseudocapacitive performance. ACS Appl Mater Interfaces 6(18):15632–15637

    Article  Google Scholar 

  11. Xiao Y, Liu S, Feng L, Zhang A, Zhao J, Fang S, Jia D (2012) 3D Hierarchical Co3O4 twin-spheres with an urchin-like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Funct Mater 22(19):4052–4059

    Article  Google Scholar 

  12. Numan A, Shahid MM, Omar FS, Ramesh K, Ramesh S (2017) Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sensors Actuators B Chem 238:1043–1051

    Article  Google Scholar 

  13. Sun GL, Ma LY, Ran JB, Shen XY, Tong H (2016) Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: implications for high performance asymmetric supercapacitors. J Mater Chem A 4(24):9542–9554

    Article  Google Scholar 

  14. Hsieh C-T, Lin J-S, Chen Y-F, Teng H (2012) Pulse microwave deposition of cobalt oxide nanoparticles on graphene nanosheets as anode materials for lithium ion batteries. J Phys Chem C 116(29):15251–15258

    Article  Google Scholar 

  15. Zhang MM, Li R, Chang XX, Xue C, Gou XL (2015) Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction. J Power Sources 290:25–34

    Article  Google Scholar 

  16. Zhou XY, Shi JJ, Liu Y, Su QM, Zhang J, Du GH (2014) Microwave irradiation synthesis of Co3O4 quantum dots/graphene composite as anode materials for Li-ion battery. Electrochim Acta 143:175–179

    Article  Google Scholar 

  17. Won JM, Cho JS, Kang YC (2016) Superior electrochemical properties of SiO2-doped Co3O4 hollow nanospheres obtained through nanoscale Kirkendall diffusion for lithium-ion batteries. J Alloy Compd 680:366–372

    Article  Google Scholar 

  18. Zhang YP, Zhuo QQ, Lv XX, Ma YY, Zhong J, Sun XH (2015) NiO-Co3O4 nanoplate composite as efficient anode in Li-ion battery. Electrochim Acta 178:590–596

    Article  Google Scholar 

  19. Wu BB, Zhang SL, Yao F, Huo RJ, Zhang FZ, Xu SL (2016) Nitrogen-doped carbon and high-content alumina containing bi-active cobalt oxides for efficient storage of lithium. J Colloid Interf Sci 462:183–190

    Article  Google Scholar 

  20. Wenelska K, Neef C, Schlestein L, Klingeler R, Kalenczuk RJ, Mijowska E (2015) Carbon nanotubes decorated by mesoporous cobalt oxide as electrode material for lithium-ion batteries. Chem Phys Lett 635:185–189

    Article  Google Scholar 

  21. Wang G, Meng Y, Wang L, Xia J, Zhu F, Zhang Y (2017) Yolk-shell Co3O4–CoO/carbon composites for lithium-ion batteries with enhanced electrochemical properties. Int J Electrochem Sci 12:2618–2627

    Article  Google Scholar 

  22. Zhang DH, Zou WB (2013) Decorating reduced graphene oxide with Co3O4 hollow spheres and their application in supercapacitor materials. Curr Appl Phys 13(8):1796–1800

    Article  Google Scholar 

  23. Xu YN, Wang XF, An CH, Wang YJ, Jiao LF, Yuan HT (2014) Synthesis of cobalt oxide-reduced graphene nanocomposite and its enhanced electrochemical properties as negative material for alkaline secondary battery. J Power Sources 272:328–334

    Article  Google Scholar 

  24. Yao WL, Yang J, Wang JL, Tao LA (2008) Synthesis and electrochemical performance of carbon nanofiber-cobalt oxide composites. Electrochim Acta 53(24):7326–7330

    Article  Google Scholar 

  25. Yao WL, Wang JL, Yang J, Du GD (2008) Novel carbon nanofiber-cobalt oxide composites for lithium storage with large capacity and high reversibility. J Power Sources 176(1):369–372

    Article  Google Scholar 

  26. Zhan L, Wang YL, Qiao WM, Ling LC, Yang SB (2012) Hollow carbon spheres with encapsulation of Co3O4 nanoparticles as anode material for lithium ion batteries. Electrochim Acta 78:440–445

    Article  Google Scholar 

  27. Wu JF, Zuo L, Song YH, Chen YQ, Zhou RH, Chen SH, Wang L (2016) Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. J Alloy Compd 656:745–752

    Article  Google Scholar 

  28. Abouelsayed A, Anis B, Hassaballa S, Khalil ASG, Rashed UM, Eid KA, Al-Ashkar E, El hotaby W (2017) Preparation, characterization, Raman, and terahertz spectroscopy study on carbon nanotubes, graphene nano-sheets, and onion like carbon materials. Mater Chem Phys 189:127–135

    Article  Google Scholar 

  29. Zhu C, Xu F, Chen J, Min H, Dong H, Tong L, Qasim K, Li S, Sun L (2016) Nitrogen-doped carbon onions encapsulating metal alloys as efficient and stable catalysts for dye-sensitized solar cells. J Power Sources 303:159–167

    Article  Google Scholar 

  30. Asokan V, Nørgaard Madsen D, Kosinski P, Myrseth V (2015) Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts. New Carbon Mater 30(1):19–29

    Article  Google Scholar 

  31. Meng Y, Xia J, Zhu F, Zhang Y (2016) Synthesis of N-doped carbon by microwave-assisted pyrolysis ionic liquid for lithium-ion batteries. Int J Electrochem Sci 11:9881–9890

    Article  Google Scholar 

  32. Wang X, Dai S (2010) Ionic liquids as versatile precursors for functionalized porous carbon and carbon–oxide composite materials by confined carbonization. Angew Chem Int Ed 49(37):6664–6668

    Article  Google Scholar 

  33. Lee JS, Wang X, Luo H, Baker GA, Dai S (2009) Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J Am Chem Soc 131(13):4596–4597

    Article  Google Scholar 

  34. Zhi L, Hu YS, Hamaoui BE, Wang X, Lieberwirth I, Kolb U, Maier J, Müllen K (2008) Precursor-controlled formation of novel carbon/metal and carbon/metal oxide nanocomposites. Adv Mater 20(9):1727–1731

    Article  Google Scholar 

  35. Fulvio PF, Lee JS, Mayes RT, Wang X, Mahurin SM, Dai S (2011) Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Phys Chem Chem Phys 13(30):13486–13491

    Article  Google Scholar 

  36. Lou YB, Liang J, Peng YL, Chen JX (2015) Ultra-small Co3O4 nanoparticles-reduced graphene oxide nanocomposite as superior anodes for lithium-ion batteries. Phys Chem Chem Phys 17(14):8885–8893

    Article  Google Scholar 

  37. Rahman MM, Wang J-Z, Deng X-L, Li Y, Liu H-K (2009) Hydrothermal synthesis of nanostructured Co3O4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery. Electrochim Acta 55(2):504–510

    Article  Google Scholar 

  38. Huang H, Gao S, Wu A-M, Cheng K, Li X-N, Gao X-X, Zhao J-J, Dong X-L, Cao G-Z (2017) Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy 31:74–83

    Article  Google Scholar 

  39. Zhang J, Zhang L, Yang S, Li D, Xie Z, Wang B, Xia Y, Quan F (2017) Facile strategy to produce N-doped carbon aerogels derived from seaweed for lithium-ion battery anode. J Alloy Compd 701:256–261

    Article  Google Scholar 

  40. Wang Q, Wu MY, Meng SJ, Zang XX, Dai ZY, Si WL, Huang W, Dong XC (2016) Hydrazine sensor based on Co3O4/rGO/carbon cloth electrochemical electrode. Adv Mater Interfaces 3(12). doi:10.1002/admi.201500691

  41. Wang B, Lu X-Y, Tang Y, Ben W (2016) General polyethyleneimine-mediated synthesis of ultrathin hexagonal Co3O4 nanosheets with reactive facets for lithium-ion batteries. ChemElectroChem 3(1):55–65

    Article  Google Scholar 

  42. Zhang G, Lu WT, Cao FF, Xiao ZD, Zheng XS (2016) N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media. J Power Sources 302:114–125

    Article  Google Scholar 

  43. Qu GL, Geng HB, Ge DH, Zheng JW, Gu HW (2016) Graphene-coated mesoporous Co3O4 fibers as an efficient anode material for Li-ion batteries. RSC Adv 6(75):71006–71011

    Article  Google Scholar 

  44. Li R, Wei Z, Gou X, Xu W (2013) Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Adv 3(25):9978–9984

    Article  Google Scholar 

  45. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342

    Article  Google Scholar 

  46. Li D, Shi D, Chen Z, Liu H, Jia D, Guo Z (2013) Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Adv 3(15):5003–5008

    Article  Google Scholar 

  47. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134(1):15–18

    Article  Google Scholar 

  48. Lin Z, Waller G, Liu Y, Liu M, Wong C-P (2012) Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv Energy Mater 2(7):884–888

    Article  Google Scholar 

  49. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928):768–771

    Article  Google Scholar 

  50. Bulusheva LG, Okotrub AV, Kurenya AG, Zhang H, Zhang H, Chen X, Song H (2011) Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49(12):4013–4023

    Article  Google Scholar 

  51. Wang R, Liu P, Lang J, Zhang L, Yan X (2017) Coupling effect between ultra-small Mn3O4 nanoparticles and porous carbon microrods for hybrid supercapacitors. Energy Storage Mater 6:53–60

    Article  Google Scholar 

  52. Guo L, Ding Y, Qin C, Li W, Du J, Fu Z, Song W, Wang F (2016) Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochim Acta 187:234–242

    Article  Google Scholar 

  53. Wu FF, Ma XJ, Feng JK, Qian YT, Xiong SL (2014) 3D Co3O4 and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. J Mater Chem A 2(30):11597–11605

    Article  Google Scholar 

  54. Hu R, Zhang H, Bu Y, Zhang H, Zhao B, Yang C (2017) Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery. Electrochim Acta 228:241–250

    Article  Google Scholar 

  55. Yin D, Huang G, Sun Q, Li Q, Wang X, Yuan D, Wang C, Wang L (2016) RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim Acta 215:410–419

    Article  Google Scholar 

  56. Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192

    Article  Google Scholar 

  57. Xing X, Liu RL, Liu SQ, Xiao S, Xu Y, Wang C, Wu DQ (2016) Surfactant-assisted hydrothermal synthesis of cobalt oxide/nitrogen-doped graphene framework for enhanced anodic performance in lithium ion batteries. Electrochim Acta 194:310–316

    Article  Google Scholar 

  58. Chae B-M, Oh E-S, Lee Y-K (2015) Conversion mechanisms of cobalt oxide anode for Li-ion battery: in situ X-ray absorption fine structure studies. J Power Sources 274:748–754

    Article  Google Scholar 

  59. Luo L, Wu J, Xu J, Dravid VP (2014) Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery. ACS Nano 8(11):11560–11566

    Article  Google Scholar 

  60. Zhu WJ, Huang H, Gan YP, Tao XY, Xia Y, Zhang WK (2014) Mesoporous cobalt monoxide nanorods grown on reduced graphene oxide nanosheets with high lithium storage performance. Electrochim Acta 138:376–382

    Article  Google Scholar 

  61. Fang H, Zhang S, Liu W, Du Z, Wu X, Xing Y (2013) Hierarchical Co3O4@multiwalled carbon nanotube nanocable films with superior cyclability and high lithium storage capacity. Electrochim Acta 108:651–659

    Article  Google Scholar 

  62. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786

    Article  Google Scholar 

  63. Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8):2049–2053

    Article  Google Scholar 

  64. Laruelle S, Grugeon S, Poizot P, Dollé M, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149(5):A627–A634

    Article  Google Scholar 

  65. Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y, Liu S, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6(2):1074–1081

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grant Nos. 51364024, 51404124), Natural Science Foundation of Gansu Province (Grant No. 1506RJZA100), and the Foundation for Innovation Groups of Basic Research in Gansu Province (No. 1606RJIA322).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuliang Zhu or Yue Zhang.

Ethics declarations

Conflicts of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Wang, G., Xiao, M. et al. Ionic liquid-derived Co3O4/carbon nano-onions composite and its enhanced performance as anode for lithium-ion batteries. J Mater Sci 52, 13192–13202 (2017). https://doi.org/10.1007/s10853-017-1414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1414-x

Keywords

Navigation