Skip to main content
Log in

Investigation of the conductive network formation of polypropylene/graphene nanoplatelets composites for different platelet sizes

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrical percolating composites of polypropylene (PP) filled with five different graphene nanoplatelet (GNP) fillers and their hybrid systems were prepared using melt blending. The effect of GNP size and their hybrid system on the conductive network formation is investigated. The formation of a conductive network can be affected by the structure and morphology of GNPs of different sizes. The GNPs with a larger diameter and smaller thickness are beneficial to produce a conductive network. The conductivity of the PP/GNP composite depends on the aspect ratio of the GNPs when the content exceeds the percolation threshold. However, when the GNP content is near the percolation threshold, both diameter and dispersion of the GNPs can affect the conductivity significantly, and electron tunneling theory should be taken in account. The highest electrical conductivity was obtained for a PP/large-diameter GNPs/medium-diameter GNPs hybrid system. To explain the hybrid system, an “island-bridge”-structured conductive network is proposed. The better conducting network may be due to scattered “islands” that connect with each other via a long “bridge.” This bridge links the islands for better charge transport across the GNPs and the obstruction of PP matrix, which enables the formation of a better conducting network. Even though GNPs with small diameter show perfect dispersion, they contribute less to the formation of a conductive network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Müller MT, Pötschke P, Voit B (2015) Dispersion of carbon nanotubes into polyethylene by an additive assisted one-step melt mixing approach. Polymer 66:210–221

    Article  Google Scholar 

  2. Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1(1):e1400129–e1400129

    Article  Google Scholar 

  3. Battisti A, Skordos AA, Partridge IK (2010) Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Technol 70(4):633–637

    Article  Google Scholar 

  4. Ahmadi-Moghadam B, Taheri F (2014) Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J Mater Sci 49(18):6180–6190. doi:10.1007/s10853-014-8332-y

    Article  Google Scholar 

  5. Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS et al (2011) Inkjet-printed graphene electronics. ACS Nano 6(4):2992–3006

    Article  Google Scholar 

  6. Chen G, Xu W, Zhu D (2017) Recent advances in organic polymer thermoelectric composites. J Mater Chem C 5(18):4350–4360

    Article  Google Scholar 

  7. Zhang Z, Chen G, Wang H et al (2015) Template-directed in situ polymerization preparation of nanocomposites of PEDOT: PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property. Chem Asian J 10(1):149–153

    Article  Google Scholar 

  8. Cao WQ, Wang XX, Yuan J, Wang W, Cao MS (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3(38):10017–10022

    Article  Google Scholar 

  9. Wen B, Cao M, Lu M, Cao W, Shi H, Liu J et al (2014) Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26(21):3484–3489

    Article  Google Scholar 

  10. Smith JG, Delozier DM, Connell JW, Watson KA (2004) Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation. Polymer 45(18):6133–6142

    Article  Google Scholar 

  11. Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black–polymer composites. Carbon 40(2):139–143

    Article  Google Scholar 

  12. Li ZM, Xu XB, Lu A, Shen KZ, Huang R, Yang MB (2004) Carbon black/poly(ethylene terephthalate)/polyethylene composite with electrically conductive in situ microfiber network. Carbon 42(2):428–432

    Article  Google Scholar 

  13. Drubetski M, Siegmann A, Narkis M (2005) Hybrid particulate and fibrous injection molded composites: carbon black/carbonfiber/polypropylene systems. Polym Compos 26(4):454–464

    Article  Google Scholar 

  14. Paglicawan MA, Kim JK, Bang DS (2010) Dispersion of multiwalled carbon nanotubes in thermoplastic elastomer gels: morphological, rheological, and electrical properties. Polym Compos 31(2):210–217

    Article  Google Scholar 

  15. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495

    Article  Google Scholar 

  16. Yong Q, Lu S, Gao F (2011) Preparation of MnO2/graphene composite as electrode material for supercapacitors. J Mater Sci 46(10):3517–3522. doi:10.1007/s10853-011-5260-y

    Article  Google Scholar 

  17. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  18. Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213(10–11):1060–1077

    Article  Google Scholar 

  19. Rajagopal C, Satyam M (1978) Studies on electrical conductivity of insulator–conductor composites. J Appl Phys 49(11):5536–5542

    Article  Google Scholar 

  20. Sheng P, Sichel EK, Gittleman JI (1978) Fluctuation-induced tunneling conducting in carbon-polyvinylchloride composites. Phys Rev Lett 40(18):1197–1200

    Article  Google Scholar 

  21. Menzer K, Krause B, Boldt R, Kretzschmar B, Weidisch R et al (2011) Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites. Compos Sci Technol 71(16):1936–1943

    Article  Google Scholar 

  22. Zhang J, He S, Lv P, Chen Y (2016) Processing–morphology–property relationships of polypropylene–graphene nanoplatelets nanocomposites. J Appl Polym Sci 134(8):44486-44495

    Google Scholar 

  23. Guehenec M, Tishkova V, Dagreou S, Leonardi F, Derailet C, Puech P et al (2013) The effect of twin screw extrusion on structural, electrical, and rheological properties in carbon nanotube poly-ether-ether-ketone nanocomposites. J Appl Polym Sci 129(5):2527–2535

    Article  Google Scholar 

  24. Müller MT, Krause B, Kretzschmar B, Pötschke P (2011) Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties. Compos Sci Technol 71(13):1535–1542

    Article  Google Scholar 

  25. Kasaliwal GR, Pegel S, Göldel A et al (2010) Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer 51(12):2708–2720

    Article  Google Scholar 

  26. Fukushima H, Drzal LT (2006) Nylon-exfoliated graphite nanoplatelet (xGnP) nanocomposites with enhanced mechanical, electrical and thermal properties, vol 1. NSTI Nanotech, PP 282–285. http://www.nsti.org

  27. Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67(10):2045–2051

    Article  Google Scholar 

  28. Wu H, Drzal LT (2013) Graphene nanoplatelet-polyetherimide composites: revealed morphology and relation to properties. J Appl Polym Sci 130(6):4081–4089

    Google Scholar 

  29. Dang ZM, Shehzad K, Zha JW, Mujahid A, Hussain T, Nie J et al (2011) Complementary percolation characteristics of carbon fillers based electrically percolative thermoplastic elastomer composites. Compos Sci Technol 72(1):28–35

    Article  Google Scholar 

  30. Wen M, Sun X, Su L, Shen J, Li J, Guo S (2012) The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7):1602–1610

    Article  Google Scholar 

  31. Mayoral B, Harkin-Jones E, Khanam NP, Al-Maadeed M, Ouederni M et al (2015) Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites. RSC Adv 5(65):52395–52409

    Article  Google Scholar 

  32. Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos Part A Appl Sci Manuf 38(7):1675–1682

    Article  Google Scholar 

  33. Wu H, Drzal LT (2012) Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50(3):1135–1145

    Article  Google Scholar 

  34. Vallés C, Abdelkader AM, Young RJ, Kinloch IA (2015) The effect of flake diameter on the reinforcement of few-layer graphene–PMMA composites. Compos Sci Technol 111:17–22

    Article  Google Scholar 

  35. Brown RP, Brandrup PJ, Immergut EH (1990) Polymer handbook. Polym Test 9(4):281–283

    Google Scholar 

  36. Liu W, Fukushima H, Drzal LT (2010) Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett 11(4):279–284

    Article  Google Scholar 

  37. Zhang HB, Zheng WG, Yan Q, Yanga Y, Wanga JW, Lu ZH et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196

    Article  Google Scholar 

  38. Zhong J, Isayev AI (2015) Properties of polyetherimide/graphite composites prepared using ultrasonic twin-screw extrusion. J Appl Polym Sci 132(5):41397–41407

    Article  Google Scholar 

  39. Xu S, Wen M, Li J, Guo S, Wang M et al (2008) Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler. Polymer 49(22):4861–4870

    Article  Google Scholar 

  40. Chen Y, Li H (2005) Effect of ultrasound on the morphology and properties of polypropylene/inorganic filler composites. J Appl Polym Sci 97(4):1553–1560

    Article  Google Scholar 

  41. Peng B, Wu H, Bao W, Guo S, Chen Y, Huang H et al (2010) Polym J 43(1):91–96

    Article  Google Scholar 

  42. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287(6):395–403

    Article  Google Scholar 

  43. Pötschke P, Villmow T, Krause B (2013) Melt mixed PCL/MWCNT composites prepared at different rotation speeds: characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution. Polymer 54(12):3071–3078

    Article  Google Scholar 

  44. Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213(10–11):1060–1077

    Article  Google Scholar 

  45. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  46. Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45(7):1446–1452

    Article  Google Scholar 

  47. Pegel S, Pötschke P, Petzold G, Alig I, Dudkin SM (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49(4):974–984

    Article  Google Scholar 

  48. Jiang X, Drzal LT (2012) Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J Appl Polym Sci 124(1):525–535

    Article  Google Scholar 

  49. Huang W, Brian R, Drzal LT (2013) Dispersion optimization of exfoliated graphene nanoplatelet in polyetherimide nanocomposites: extrusion, precoating, and solid state ball milling. Polym Compos 34(3):426–432

    Article  Google Scholar 

  50. Zhong J, Isayev AI, Zhang X (2016) Ultrasonic twin screw compounding of polypropylene with carbon nanotubes, graphene nanoplates and carbon black. Eur Polym J 80:16–39

    Article  Google Scholar 

  51. Iqbal MZ, Abdala AA, Mittal V, Seifert S, Herring AM et al (2016) Processable conductive graphene/polyethylene nanocomposites: effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure. Polymer 98:143–155

    Article  Google Scholar 

  52. Devpura A, Phelan PE, Prasher RS (2001) Size effects on the thermal conductivity of polymers laden with highly conductive filler particles. Nanosc Microsc Therm 5(3):177–189

    Article  Google Scholar 

  53. Polley MH, Boonstra BBST (1957) Carbon blacks for highly conductive rubber. Rubber Chem Technol 30:170–179

    Article  Google Scholar 

  54. Drubetski M, Siegmann A, Narkis M (2007) Electrical properties of hybrid carbon black/carbon fiber polypropylene composites. J Mater Sci 42(1):1–8. doi:10.1007/s10853-006-1203-4

    Article  Google Scholar 

  55. Ma P, Liu M, Zhang H, Wang S, Wang R, Wang K et al (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interface 1(5):1090–1096

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Science and Technology Project of Guangdong Province (No. 2013B090600069) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Zhang, J., Xiao, X. et al. Investigation of the conductive network formation of polypropylene/graphene nanoplatelets composites for different platelet sizes. J Mater Sci 52, 13103–13119 (2017). https://doi.org/10.1007/s10853-017-1413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1413-y

Keywords

Navigation