Skip to main content
Log in

Wet chemical etching of ZnO films using NH x -based (NH4)2CO3 and NH4OH alkaline solution

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we deposited ZnO thin films by RF magnetron sputtering at room temperature from un-doped targets. Wet chemical etching of ZnO films in (NH4)2CO3 and NH4OH solutions were examined. For comparison, hydrochloric acid was also used as an etchant. The NH x -based alkaline solutions provide well-controlled etching rate, and smooth surface and sidewall profiles. Although NH x -based alkaline solution etch rates for ZnO were relatively low, they were enhanced with the use of a H3O stabilizer. In this case, the NH4OH solution went from reaction-dominant mode to diffusion-dominant mode, which is beneficial for smooth surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bagnall DM, Chen YF, Zhu Z, Yao T, Koyama S, Shen MY, Goto T (1997) Optically pumped lasing of ZnO at room temperature. Appl Phys Lett 70:2230–2232

    Article  Google Scholar 

  2. Tang ZK, Wong GKL, Yu M, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1998) Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett 72:3270–3272

    Article  Google Scholar 

  3. Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B 80:383–387

    Article  Google Scholar 

  4. Kohiki S, Nishitani M, Wada T (1994) Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms. J Appl Phys 75:2069–2072

    Article  Google Scholar 

  5. Ohta H, Kawamura K, Orita M, Hirano M, Sarukura N, Hosono H (2000) Current injection emission from a transparent p–n junction composed of p-SrCu2O2/n-ZnO. Appl Phys Lett 77:475–477

    Article  Google Scholar 

  6. Yamamoto T, Yoshida HK (1999) Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn J Appl Phys 38:L166

    Article  Google Scholar 

  7. Joseph M, Tabata H, Kawai T (1999) p-type electrical conduction in ZnO thin films by Ga and N cooping. Jpn J Appl Phys 38:L1205

    Article  Google Scholar 

  8. Segawa Y, Ohtomo A, Kawasaki M, Koinuma H, Tang ZK, Yu P, Wong GKL (1997) Growth of ZnO thin film by laser MBE: lasing of exciton at room temperature. Phys Stat Sol (b) 202:669–672

    Article  Google Scholar 

  9. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Article  Google Scholar 

  10. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Recent progress in processing and properties of ZnO. Prog Mater Sci 50:293–340

    Article  Google Scholar 

  11. Özgür Ü, Hofstetter D, Morkoc H (2010) ZnO devices and applications: a review of current status and future prospects. Proc IEEE 98:1255–1268

    Article  Google Scholar 

  12. Ito Y, Kushida K, Sugawara K, Takeuchi H (1995) A 100-MHz ultrasonic transducer array using ZnO thin films. IEEE Trans Ferroelectr Freq Control 42:316–324

    Article  Google Scholar 

  13. Kluth O, Loffl A, Wieder S, Beneking C (1997) Texture etched Al-doped ZnO: a new material for enhanced light trapping in thin film solar cells. In: Proceedings of 26th photovoltaic specialists conference (PVSC). IEEE, pp 715–718

  14. Hickemell FS (1992) The etched surface of sputtered zinc oxide and its relationship to fractal growth and surface wave properties. In: Proceedings of ultrasonics symposium, 1992. IEEE, pp 373–376

  15. Lou KC, Zhu X, Lakdawala H, Kim ES (1997) Study on etch front of piezoelectric ZnO film and new step coverage technique. In: Proceedings of ultrasonics symposium, 1997. IEEE, pp 565–568

  16. Chang SC, Hicks DB, Laugal RCO (1992) Patterning of zinc oxide thin films. In: Solid-state sensor and actuator workshop. Technical digest. IEEE, pp 41–45

  17. Maki H, Ikoma T, Sakaguchi I, Ohashi N, Haneda H, Tanaka J, Ichinose N (2002) Control of surface morphology of ZnO (0001) by hydrochloric acid etching. Thin Solid Films 411:91–95

    Article  Google Scholar 

  18. Warekois EP, Lavine MC, Marino AN, Gatos HC (1962) Crystallographic polarity in the II–VI compounds. J Appl Phys 33:690–696

    Article  Google Scholar 

  19. Takahashi K, Funakubo H, Ohashi N, Haneda H (2005) Micro-patterning of ZnO single crystal surface by anisotropic wet-chemical etching. Thin Solid Films 486:42–45

    Article  Google Scholar 

  20. Ohashi N, Takahashi K, Hishita S, Sakaguchi I, Funakubo H, Haneda H (2007) Fabrication of ZnO microstructures by anisotropic wet-chemical etching. J Electrochem Soc 154:82–87

    Article  Google Scholar 

  21. Vellekoop MJ, Visser CCO, Sarro PM, Venema A (1990) Compatibility of zinc oxide with silicon IC processing. Sens Actuators 23:1027–1030

    Article  Google Scholar 

  22. Zhu J, Emanetoglu NW, Chen Y, Yakshinskiy BV, Lu Y (2004) Wet-chemical etching of (11–20) ZnO films. J Electron Mater 33:556–559

    Article  Google Scholar 

  23. Lee JM, Kim KK, Hyun CK, Tampo H, Niki S (2006) Microstructural evolution of ZnO by wet-etching using acidic solutions. J Nanosci Nanotechnol 6:3364–3368

    Article  Google Scholar 

  24. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2004) Recent advances in processing of ZnO. J Vac Sci Technol B 22:932–948

    Article  Google Scholar 

  25. Yoo DG, Nam SH, Kim MH, Jeong SH, Lee HG, Lee HJ, Lee NE, Hong BY, Kim YJ, Jung D, Boo JH (2008) Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices. Surf Coat Technol 202:5476–5479

    Article  Google Scholar 

  26. Han SC, Kim JK, Kim JY, Kim KK, Tampo H, Niki S, Lee JM (2010) Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching. J Electrochem Soc 157:60–64

    Article  Google Scholar 

  27. Lim W, Craciun V, Siebein K, Gila BP, Norton DP, Pearton SJ, Ren F (2008) Surface and bulk thermal annealing effects on ZnO crystals. Appl Surf Sci 254:2396–2400

    Article  Google Scholar 

  28. Xing GZ, Yao B, Cong CX, Yang T, Xie YP, Li BH, Shen DZ (2008) Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering. J Alloy Compd 457:36–41

    Article  Google Scholar 

  29. Oh BY, Jeong MC, Kim DS, Lee W, Myoung JM (2005) Post-annealing of Al-doped ZnO films in hydrogen atmosphere. J Cryst Growth 281:475–480

    Article  Google Scholar 

  30. Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46

    Article  Google Scholar 

  31. Fujimura N, Nishihara T, Goto S, Xu J, Ito T (1993) Control of preferred orientation for ZnO x films: control of self-texture. J Cryst Growth 130:269–279

    Article  Google Scholar 

  32. Nandi SK, Chakraborty S, Bera MK, Maiti CK (2007) Structural and optical properties of ZnO films grown on silicon and their applications in MOS devices in conjunction with ZrO2 as a gate dielectric. Bull Mater Sci 30:247–254

    Article  Google Scholar 

  33. Barna PB, Adamik M (1998) Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317:27–33

    Article  Google Scholar 

  34. Sagalowicz L, Fox GR (1999) Planar defects in ZnO thin films deposited on optical fibers and flat substrates. J Mater Res 14:1876–1885

    Article  Google Scholar 

  35. Sanon G, Rup R, Mansingh A (1990) Growth and characterization of tin oxide films prepared by chemical vapour deposition. Thin Solid Films 190:287–301

    Article  Google Scholar 

  36. Khomyak VV, Slyotov MM, Shtepliuk II, Lashkarev GV, Slyotov OM, Marianchuk PD, Kosolovskiy VV (2013) Annealing effect on the near-band edge emission of ZnO. J Phys Chem Solids 74:291–297

    Article  Google Scholar 

  37. Ansari SA, Khan MM, Kalathil S, Nisar A, Lee J, Cho MM (2013) Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5:9238–9246

    Article  Google Scholar 

  38. Li CC, Du ZF, Li LM, Yu HC, Wan Q, Wang TH (2007) Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Appl Phys Lett 91:032101

    Article  Google Scholar 

  39. Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wen LS (2008) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134

    Article  Google Scholar 

  40. Kim YS, Tai WP, Shu SJ (2005) Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process. Thin Solid Films 491:153–160

    Article  Google Scholar 

  41. Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9:2331–2336

    Article  Google Scholar 

  42. Chen LC, Tu YJ, Wang YS, Kan RS, Huang CM (2008) Characterization and photoreactivity of N-S-, and C-doped ZnO under UV and visible light illumination. J Photochem Photobiol A Chem 199:170–178

    Article  Google Scholar 

  43. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  44. Fuggle JC, Menzel D (1979) XPS, UPS and XAES studies of the adsorption of nitrogen, oxygen, and nitrogen oxides on W(110) at 300 and 100 K: I. Adsorption of N2, N2O and NO2N2O4. Surf Sci 79:1–25

    Article  Google Scholar 

  45. Owen JI, Zhang W, Köhl D, Hüpkes J (2012) Study on the in-line sputtering growth and structural properties of polycrystalline ZnO: Al on ZnO and glass. J Cryst Growth 344:12–18

    Article  Google Scholar 

  46. Windischmann H (1992) Intrinsic stress in sputter-deposited thin films. Crit Rev Solid State Mater Sci 17:547–596

    Article  Google Scholar 

  47. Han MY, Jou JH (1995) Determination of the mechanical properties of rf-magnetron sputtered zinc oxide thin films on substrates. Thin Solid Films 260:58–64

    Article  Google Scholar 

  48. Ohya Y, Saiki H, Tanaka T, Takahashi Y (1996) Microstructure of TiO2 and ZnO films fabricated by the sol–gel method. J Am Ceram Soc 79:825–830

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2014R1A6A1030419 and NRF-2015R1D1A1A01061005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Myon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JK., Lee, JM. Wet chemical etching of ZnO films using NH x -based (NH4)2CO3 and NH4OH alkaline solution. J Mater Sci 52, 13054–13063 (2017). https://doi.org/10.1007/s10853-017-1409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1409-7

Keywords

Navigation