Skip to main content
Log in

Electronic and optical properties of β-graphyne nanotubes and their BN analogues

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electronic and optical properties of zigzag and armchair β-graphyne nanotubes (β-GNTs) and their BN analogues (labeled as β-BNyne NTs) with different tube diameters are systematically investigated by the first-principles calculations. The calculated results reveal that all zigzag and armchair β-graphyne nanotubes are direct band gap semiconductors. As for zigzag β-BNyne NTs, they are wide direct band gap semiconductors. Nevertheless, armchair β-BNyne NTs are indirect band gap semiconductor. The optical spectra of β-GNTs and BNyne NTs show remarkable anisotropic behavior. Interestingly, the static dielectric constant of β-GNTs is quite high in comparison with carbon NTs, indicating higher conductivity and carrier mobility. In addition, quite broad frequency absorption spectra, extended from the infrared to the ultraviolet (UV) region, are observed for all β-GNTs. However, the photoresponse of β-BNyne NTs is mainly located in the UV region. The β-GNTs exhibit high reflectivity in the infrared region of 0.0 to 1.5 eV for both parallel and perpendicular polarization, but all β-BNyne NTs possess very low reflectivity and are highly sensitive to the UV light. Particularly, all β-GNTs demonstrate no obvious size-dependent optical properties, however, for β-BNyne NTs, all the photoresponse intensity (static dielectric constant, reflectivity and absorption coefficient) decreases monotonically with increasing tube size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Li Y, Xu L, Liu H, Li Y (2014) Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev 43(8):2572–2586

    Article  Google Scholar 

  2. Chen YH, Liu HB, Li YL (2016) Progress and prospect of two dimensional carbon graphdiyne (in Chinese). Chin Sci Bull 61(26):2901–2912

    Google Scholar 

  3. Wu WZ, Guo WL, Zeng XC (2013) Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. Nanoscale 5(19):9264–9276

    Google Scholar 

  4. Hwang HJ, Koo J, Park M, Park N, Kwon Y, Lee H (2013) Multilayer graphynes for lithium ion battery anode. J Phys Chem C 117(14):6919–6923

    Article  Google Scholar 

  5. Hwang HJ, Kwon Y, Lee H (2012) Thermodynamically stable calcium-decorated graphyne as a hydrogen storage medium. J Phys Chem C 116(38):20220–20224

    Article  Google Scholar 

  6. Kou J, Zhou X, Lu H, Wu F, Fan J (2014) Graphyne as the membrane for water desalination. Nanoscale 6(3):1865–1870

    Article  Google Scholar 

  7. Kang J, Li J, Wu F, Li SS, Xia JB (2011) Elastic, Electronic, and optical properties of two-dimensional graphyne sheet. J Phys Chem C 115(42):20466–20470

    Article  Google Scholar 

  8. Kang B, Lee JY (2015) Electronic properties of α-graphyne nanotubes. Carbon 84:246–253

    Article  Google Scholar 

  9. Kang B, Moon JH, Lee JY (2015) Size dependent electronic band structures of β- and γ-graphyne nanotubes. RSC Adv. 5(98):80118–80121

    Article  Google Scholar 

  10. Majidi R, Karami AR (2015) Electronic properties of B- and N-doped graphyne nanotubes. Comput Mater Sci 97:227–230

    Article  Google Scholar 

  11. Zhou H, Lu S, Li F, Qu Y (2016) Carbon nanoribbons and nanotubes based on δ-graphyne: a first-principles study. Physica E 78:19–24

    Article  Google Scholar 

  12. Coluci VR, Braga SF, Legoas SB, Galvão DS, Baughman RH (2003) Families of carbon nanotubes: graphyne-based nanotubes. Rhys Rev B 68:035430

    Article  Google Scholar 

  13. Wang XM, Lu SS (2013) Thermoelectric transport in graphyne nanotubes. J Phys Chem C 117(38):19740–19745

    Article  Google Scholar 

  14. Bhattacharya B, Singh NB, Mondal R, Sarkar U (2015) Electronic and optical properties of pristine and boron-nitrogen doped graphyne nanotubes. Phys Chem Chem Phys 17(29):19325–19341

    Article  Google Scholar 

  15. Coluci VR, Braga SF, Legoas SB, Galvão DS, Baughman RH (2004) New families of carbon nanotubes based on graphyne motifs. Nanotechnology 15(4):S142–S149

    Article  Google Scholar 

  16. Coluci VR, Galvão DS, Baughman RH (2004) Theoretical investigation of electromechanical effects for graphyne carbon nanotubes. J Chem Phys 121(7):3228–3237

    Article  Google Scholar 

  17. Li G, Li Y, Qian X, Liu H, Lin H, Chen N, Li Y (2011) Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J Phys Chem C 115(6):2611–2615

    Article  Google Scholar 

  18. Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28(5):335–340

    Article  Google Scholar 

  19. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(5226):966

    Article  Google Scholar 

  20. Jia J, Wu H, Jiao H (2006) The structure and electronic property of BN nanotube. Phys B 381(1–2):90–95

    Article  Google Scholar 

  21. Ahmad P, Khandaker MU, Khan ZR, Amin YM (2015) Synthesis of boron nitride nanotubes via chemical vapour deposition: a comprehensive review. RSC Adv 5:35116–35137

    Article  Google Scholar 

  22. Jiang X, Weng Q, Wang X, Li X, Zhang J, Golberg D, Bando Y (2015) Recent progress on fabrications and applications of boron nitride nanomaterials: a review. J Mater Sci Technol 31(6):589–598

    Article  Google Scholar 

  23. Zhang Y, Yun J, Wang K, Chen X, Yang Z, Zhang Z, Yan J, Zhao W (2017) First-principle study of graphyne-like BN sheet: electronic structure and optical properties. Comp Mater Sci 126:12–19

    Article  Google Scholar 

  24. Özçelik VO, Ciraci S (2013) Size dependence in the stabilities and electronic properties of α-graphyne and its boron nitride analogue. J Phys Chem C 117:2175–2182

    Article  Google Scholar 

  25. Yun J, Zhang Y, Wang K, Zhang Z (2016) Electronic structure and optical properties of graphyne-like BN nanotubes. Comp Mater Sci 123:79–84

    Article  Google Scholar 

  26. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEPcode. J Phys: Condens Matter 14(11):2717–2744

    Google Scholar 

  27. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  Google Scholar 

  28. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

    Article  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  30. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys. Rev. B 13(12):5188–5192

    Article  Google Scholar 

  31. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP: zeitschrift für Kristallographie–Crystalline Materials, Z. Kristallogr 220:567–570

    Google Scholar 

  32. Perkgoz NK, Sevik C (2014) Vibrational and thermodynamic properties of α-, β-, γ-, and 6, 6, 12-graphyne structures. Nanotechnology 25(18):185701

    Article  Google Scholar 

  33. Lee SM, Lee YH, Huang YG, Elsner J, Porezag D, Frauenheim T (1999) Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys Rev B 60(11):7788–7791

    Article  Google Scholar 

  34. Sánchez-Portal D, Artacho E, Soler JM (1999) Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59(19):12678–12688

    Article  Google Scholar 

  35. Zhao M, Xia Y, Zhang D, Mei L (2003) Stability and electronic structure of AlN nanotubes. Phys Rev B 68:235415

    Article  Google Scholar 

  36. Hernández E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80(20):4502–4505

    Article  Google Scholar 

  37. Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phy Rev B 45(21):12592–12595

    Article  Google Scholar 

  38. Hua X, Agin T, Che J, Goddard WA III (2000) QM(DFT) and MD studies on formation mechanism of C-60 fullerenes. Nanotechnology 11(2):85–88

    Article  Google Scholar 

  39. Ouyang M, Huang JL, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes. Science 292(5517):702–705

    Article  Google Scholar 

  40. Tibbetts GG (1983) Why are carbon filaments tubular? J Cryst Growth 66(3):632–638

    Article  Google Scholar 

  41. Peng LM, Zhang ZL, Xue ZQ, Wu QD, Gu ZN, Pettifor DG (2000) Stability of carbon nanotubes: how small can they be? Phys Rev Lett 85(15):3249–3252

    Article  Google Scholar 

  42. Zhang Z, Guo W, Dai Y (2009) Stability and electronic properties of small boron nitride nanotubes. J Appl Phys 105:084312

    Article  Google Scholar 

  43. Liu L, Zhang L, Gao H, Zhao J (2011) Structure, energetics, and heteroatom doping of armchair carbon nanotori. Carbon 49:4518–4523

    Article  Google Scholar 

  44. Kleiner A, Eggert S (2002) Curvature, hybridization, and STM images of carbon nanotubes. Phys Rev B 64(11):113402–113405

    Article  Google Scholar 

  45. Ebbesen TW (1996) Carbon nanotubes. Phys Today 49(6):26–32

    Article  Google Scholar 

  46. Blase X, Benedict LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72(12):1878–1881

    Article  Google Scholar 

  47. Yi JY, Bernholc J (1993) Atomic structure and doping of microtubules. Phys Rev B 47(3):1708–1711

    Article  Google Scholar 

  48. Ding JW, Yan XH, Cao JX (2002) Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Phys Rev B 66(7):073401

    Article  Google Scholar 

  49. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118:8207

    Article  Google Scholar 

  50. Jana D, Chen LC, Chen CW, Chattopadhyay S, Chen KH (2007) A first principles study of the optical properties of B x C y single wall nanotubes. Carbon 45(7):1482–1491

    Article  Google Scholar 

  51. Jain SK, Srivastava P (2013) Optical properties of hexagonal boron nanotubes by first-principles calculations. J Appl Phys 114(7):073514

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Program No. 61306009) and the Science and Technology Star Project of Shaanxi Province (2013KJXX-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangni Yun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, J., Zhang, Y., Yan, J. et al. Electronic and optical properties of β-graphyne nanotubes and their BN analogues. J Mater Sci 52, 13133–13148 (2017). https://doi.org/10.1007/s10853-017-1406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1406-x

Keywords

Navigation