Skip to main content

Advertisement

Log in

A detailed insight into the preparation of nanocrystalline TiO2 powders in supercritical carbon dioxide

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work reports detailed investigations for the preparation of nanostructured titania powders by a solvent-free sol–gel-derived process, operated in supercritical CO2 (SC-CO2) at high pressures (10–30 MPa) and large range of temperatures (373–823 K). Depending on the processing temperature, the reaction between Ti(OiPr)4 and water performed in a single supercritical phase led to the formation of either amorphous (Ti(OH)4—titanium hydroxide) or crystalline (TiO2—titanium dioxide) nanostructured particles. Crystalline (anatase) mesoporous powders with high specific surface area were obtained directly in CO2 solvent under supercritical conditions at temperatures as low as 523 K. The effect of hydrodynamic key process parameters such as stirring and water injection rate on both powder morphology and aggregation degree was also investigated in details. The optimized TiO2 anatase powders exhibited attractive photocatalytic activity, with high potential for the degradation of water pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhanga R, Elzatahryb AA, Salem S, Al-Deyabb SS, Zhao D (2012) Mesoporous titania: from synthesis to application. Nano Today 7:344–366

    Article  Google Scholar 

  2. Herrmann J-M (2010) Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B 99:461–468

    Article  Google Scholar 

  3. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  Google Scholar 

  4. Pelaez M, Nolanb NT, Pillai SC, Seeryc MK, Falarasd P, Kontosd AG, Dunlope PSM, Hamiltone JWJ, Byrnee JA, O’Sheaf K, Entezarig MH, Dionysios D, Dionysioua DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  Google Scholar 

  5. Bernardini C, Cappelletti G, Dozzi M, Selli E (2010) Photocatalytic degradation of organic molecules in water: photoactivity and reaction paths in relation to TiO2 particles features. J Photochem Photobiol A Chem 211(1):85–92

    Google Scholar 

  6. Lee K-M, Hu C-W, Chen H-W, Ho K-C (2008) Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Solar Energy Mater Solar Cells 92:1628–1633

    Article  Google Scholar 

  7. Ding Z, Hu X, Lu GQ, Yue P-L, Greenfield PF (2000) Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir 16:6216–6222

    Article  Google Scholar 

  8. Lee BI, Wang X, Bhave R, Hu M (2006) Synthesis of brookite TiO2 nanoparticles by ambient condition sol process. Mater Lett 60:1179–1183

    Article  Google Scholar 

  9. Fang C-S, Chen Y-W (2003) Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution. Mater Chem Phys 78:739–745

    Article  Google Scholar 

  10. Terada Y, Suzuki Y, Tohno S (2012) Synthesis and characterization of TiO2 powders by electrospray pyrolysis method. Mater Res Bull 47:889–895

    Article  Google Scholar 

  11. Payakgul W, Mekasuwandumrong O, Pavarajarn V, Praserthdam P (2005) Effects of reaction medium on the synthesis of TiO2 nanocrystals by thermal decomposition of titanium (IV) n-butoxide. Ceram Int 31:391–397

    Article  Google Scholar 

  12. Qourzal S, Assabbane A, Ait-Ichou Y (2004) Synthesis of TiO2 via hydrolysis of titanium tetraisopropoxide and its photocatalytic activity on a suspended mixture with activated carbon in the degradation of 2-naphthol. J Photochem Photobiol A 163:317–321

    Article  Google Scholar 

  13. Beitollahi A, Daie AHH, Samie L, Akbarnejad MM (2010) Synthesis and characterization of mesoporous TiO2 assembled as microspheres. J Alloy Compd 490:311–317

    Article  Google Scholar 

  14. Ding X-Z, Liu X-H (1997) Synthesis and microstructure control of nanocrystalline titania powders via a sol-gel process. Mater Sci Eng A 224:210–215

    Article  Google Scholar 

  15. Liu H, Yang W, Ma Y, Cao Y, Yao J, Zhang J, Hu T (2003) Synthesis and characterization of titania prepared by using a photoassisted sol–gel method. Langmuir 19:3001–3005

    Article  Google Scholar 

  16. Tanaka S, Nogami D, Tsuda N, Miyake Y (2009) Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range. J Colloid Interface Sci 334:188–194

    Article  Google Scholar 

  17. Marugán J, Christensen P, Egerton T, Purnama H (2009) Synthesis, characterization and activity of photocatalytic sol–gel TiO2 powders. Appl Catal B 89:273–283

    Article  Google Scholar 

  18. Kaper H, Sallard S, Djerdj I, Antonietti M, Bernd M, Smarsly BM (2010) Toward a low-temperature sol–gel synthesis of TiO2 using mixtures of surfactants and ionic liquids. Chem Mater 22:3502–3510

    Article  Google Scholar 

  19. Cheng Q-Q, Cao Y, Yang L, Zhang P-P, Wang K, Wang H-J (2011) Synthesis of titania microspheres with hierarchical structures and high photocatalytic activity by using nonanoic acid as the structure-directing agent. Mater Lett 65:2833–2835

    Article  Google Scholar 

  20. Dittert B, Gavrilović A, Schwarz S, Angerer P, Steiner H, Schöftner R (2011) Phase content controlled TiO2 nanoparticles using the MicroJetReactor technology. J Eur Ceram Soc 31:2475–2480

    Article  Google Scholar 

  21. Farbod M, Khademalrasool M (2011) Synthesis of TiO2 nanoparticles by a combined sol–gel ball milling method and investigation of nanoparticle size effect on their photocatalytic activities. Powder Technol 214:344–348

    Article  Google Scholar 

  22. Loryuenyong V, Angamnuaysiri K, Sukcharoenpong J, Suwannasri A (2012) Sol–gel derived mesoporous titania nanoparticles: effects of calcination temperature and alcoholic solvent on the photocatalytic behavior. Ceram Int 38:2233–2237

    Article  Google Scholar 

  23. Duvarci ÖÇ, Çiftçioğlu M (2012) Preparation and characterization of nanocrystalline titania powders by sonochemical synthesis. Powder Technol 228:231–240

    Article  Google Scholar 

  24. Chhor K, Bocquet JF, Pommier C (1992) Syntheses of submicron TiO2 powders in vapor, liquid and supercritical phases, a comparative study. Mater Chem Phys 32:249–254

    Article  Google Scholar 

  25. Gourinchas Courtecuisse V, Chhor K, Bocquet J-F, Pommier C (1996) Kinetics of the titanium isopropoxide decomposition in supercritical isopropyl alcohol. Ind Eng Chem Res 35:2539–2545

    Article  Google Scholar 

  26. Zhang X, Heinonena S, Levänen E (2014) Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Adv 4:61137–61152

    Article  Google Scholar 

  27. Sanli D, Bozbag SE, Erkey C (2012) Synthesis of nanostructured materials using supercritical CO2. Part I. Phys Transform Mater Sci 47:2995–3025

    Article  Google Scholar 

  28. Bozbag SE, Sanli D, Erkey C (2012) Synthesis of nanostructured materials using supercritical CO2. Part II. Chemical transformations. J Mater Sci 47:3469–3492. doi:10.1007/s10853-011-6064-9

    Article  Google Scholar 

  29. Cansell F, Aymonier C (2009) Design of functional nanostructured materials using supercritical fluids. J Supercrit Fluids 47:508–516

    Article  Google Scholar 

  30. Sui R, Charpentier P (2012) Synthesis of metal oxide nanostructures by direct sol–gel chemistry in supercritical fluids. Chem Rev 112:3057–3082

    Article  Google Scholar 

  31. Tadros ME, Adkins CLJ, Russick EM, Youngman MP (1996) Synthesis of titanium dioxide particles in supercritical CO2. J Supercrit Fluids 9:172–176

    Article  Google Scholar 

  32. Reverchon E, Caputo G, Correra S, Cesti P (2003) Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale. J Supercrit Fluids 26:253–261

    Article  Google Scholar 

  33. Stallings WE, Lamb HH (2003) Synthesis of nanostructured titania powders via hydrolysis of titanium isopropoxide in supercritical carbon dioxide. Langmuir 19:2989–2994

    Article  Google Scholar 

  34. Hong S-S, Lee MS, Lee G-D, Lim KT, Ha B-J (2003) Synthesis of titanium dioxides in water-in-carbon dioxide microemulsion and their photocatalytic activity. Mater Lett 57:2975–2979

    Article  Google Scholar 

  35. Alonso E, Montequi I, Lucas S, Cocero MJ (2007) Synthesis of titanium oxide particles in supercritical CO2: effect of operational variables in the characteristics of the final product. J Supercrit Fluids 39:453–461

    Article  Google Scholar 

  36. Wakayama H, Fukushima Y (2000) Supercritical CO2 as a solvent for synthesis of nanoporous materials. Ind Eng Chem Res 39:4641–4645

    Article  Google Scholar 

  37. Reverchon E, Adami R (2006) Nanomaterials and supercritical fluids. J Supercrit Fluids 37:1–22

    Article  Google Scholar 

  38. Zhou W, Li W, Wang J-Q, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D (2014) Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J Am Chem Soc 26:9280–9283

    Article  Google Scholar 

  39. Zhou W, Sun F, Pan K, Tian G, Jiang B, Ren Z, Tian C, Fu H (2011) Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Funct Mater 21:1922

    Article  Google Scholar 

  40. Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34(1):49–65

    Article  Google Scholar 

  41. Guillard C, Horikoshi S, Watanabe N, Hidaka H, Pichat P (2002) Photocatalytic degradation mechanism for heterocyclic derivatives of triazolidine and triazole. J Photochem Photobiol A 149(1–3):155–168

    Article  Google Scholar 

  42. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Article  Google Scholar 

  43. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92(1):178–190

    Article  Google Scholar 

  44. Okamoto K-I, Yamamoto Y, Tanaka H, Tanaka M, Itaya A (1985) Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bull Chem Soc Jpn 58(7):2015–2022

    Article  Google Scholar 

  45. Munuera G, Rives-Arnau V, Saucedo A (1979) Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 1. Role of hydroxyl groups in photo-adsorption. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 75:736–747

    Google Scholar 

  46. Wiebe R, Gaddy VL (1941) Vapor phase composition of carbon dioxide-water mixtures at various temperatures and at pressures to 700 atmospheres. J Am Chem Soc 63:475–477

    Article  Google Scholar 

  47. Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38(1/2):231–252

    Article  Google Scholar 

  48. Edelson LH, Glaeser AM (1988) Role of particle substructure in the sintering of monosized titania. J Am Ceram Soc 71:225–235

    Article  Google Scholar 

  49. Hertz A, Drobek M, Ruiz J-C, Sarrade S, Guizard C, Julbe A (2013) Robust synthesis of yttria stabilized tetragonal zirconia powders (3Y-TZP) using a semi-continuous process in supercritical CO2. Chem Eng J 228:622–630

    Article  Google Scholar 

  50. Klotz M, Marinha D, Guizard C, Julbe A, Addad A, Hertz A, Charton F (2016) Sintering and conductivity of nano-sized yttria-doped ZrO2 synthesized by a supercritical CO2-assisted sol-gel process. J Supercrit Fluids 115:26–32

    Article  Google Scholar 

  51. Hertz A, Sarrade S, Guizard C, Julbe A (2006) Synthesis and encapsulation of yttria stabilized zirconia particles in supercritical carbon dioxide. J. Eur Ceram Soc 26:1195–1203

    Article  Google Scholar 

  52. Hertz A, Corre Y-M, Sarrade S, Guizard C, Julbe A, Ruiz J-C, Fournel B (2010) Yttria stabilized zirconia synthesis in supercritical CO2: understanding of particle formation mechanisms in CO2/Co-solvent systems. J. Eur Ceram Soc 30–7:1691–1698

    Article  Google Scholar 

  53. Klotz M, Hernández WY, Guizard C, Viazzi C, Hertz A, Charton F, Tardivat C, Vernoux P (2015) High specific surface area YSZ powders from a supercritical CO2 process as catalytic supports for NOx storage-reduction reaction. Catal Sci Technol 5:2125–2131

    Article  Google Scholar 

  54. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    Article  Google Scholar 

  55. Lee S-Y, Park S-J (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19(6):1761–1769

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sébastien PAPET for his contribution to amorphous powder preparation and characterizations, M. Mickael GARCES and M. Damien AVRIL for their work on crystalline TiO2 particles and Mlle Géraldine DIDERON for photocatalytic tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hertz.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertz, A., Drobek, M., Ruiz, JC. et al. A detailed insight into the preparation of nanocrystalline TiO2 powders in supercritical carbon dioxide. J Mater Sci 52, 12635–12652 (2017). https://doi.org/10.1007/s10853-017-1398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1398-6

Keywords

Navigation