Skip to main content
Log in

Improved microstructure and thermoelectric properties of higher manganese silicide processed by reactive spark plasma sintering

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the crystal structure, microstructure, thermoelectric properties and figure of merit (zT) of highly pure higher manganese silicide (HMS) alloys are reported and discussed without the bias generally introduced by impurities in published results. The alloys were produced by both solid-state reaction diffusion assisted by spark plasma sintering and conventional arc melting in order to evaluate the effect of the process on the microstructure and on the resulting properties of HMS. The effect of Ge addition is also explored. Properties diagram for thermoelectric materials is displayed to assess the performance of un-doped and Ge-doped HMS alloys in comparison with the state of the art. Electrical conductivity and zT at 500 °C of the HMS alloys studied here exceed published properties achieved with similar alloys, providing new process options for reliable, affordable and efficient thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  Google Scholar 

  2. Yamamoto A, Ghodke S, Miyazaki H, Inukai M, Nishino Y, Matsunami M, Takeuchi T (2016) Thermoelectric properties of supersaturated Re solid solution of higher manganese silicides. J Appl Phys 55:020301

    Article  Google Scholar 

  3. DeRidder R, Amelinckx S (1971) The structure of defect manganese silicides. Mater Res Bull 6:1223–1234

    Article  Google Scholar 

  4. Knott HW, Mueller MH, Heaton L (1967) The crystal structure of Mn15Si26. Acta Cryst 23:549–555

    Article  Google Scholar 

  5. Zwilling G, Nowotny H (1973) The crystal structure of the defect manganese silicide, Mn27Si47. Monatsh Chem 102:672–677

    Article  Google Scholar 

  6. Shin D-K, Jang K-W, Ur S-C, Kim I-H (2013) Thermoelectric properties of higher manganese silicides prepared by mechanical alloying and hot pressing. J Electron Mater 42:1756–1761

    Article  Google Scholar 

  7. Sadia Y, Dinnerman L, Gelbstein Y (2013) Mechanical alloying and spark plasma sintering of higher manganese silicides for thermoelectric applications. J Electron Mater 42:1927–1931

    Article  Google Scholar 

  8. Zhou AJ, Zhao XB, Zhu TJ, Dasgupta T, Stiewe C, Hassdorf R, Mueller E (2010) Mechanochemical decomposition of higher manganese silicides in the ball milling process. Intermetallics 18:2051–2056

    Article  Google Scholar 

  9. Kawasumi I, Sakata M, Nishida I, Masumoto K (1981) Mechanochemical decomposition of higher manganese silicides in the ball milling process. J Mater Sci 16:355–366. doi:10.1016/j.intermet.2010.06.008

    Article  Google Scholar 

  10. Suvorona I, Klechkovskaya VV (2013) Precipitates of MnSi cubic phase in tetragonal Mn4Si7 crystal. Crystallogr Rep 58(2013):854–861

    Article  Google Scholar 

  11. Levinson LM (1973) Investigation of the defect manganese silicide MnnSi2n-m. J Solid State Chem 6:126–135

    Article  Google Scholar 

  12. Aoyama I, Fedorov MI, Zaitsev VK, Solomkin FY, Eremin IS, Samunin AY, Mukoujima M, Sano S, Tsuji T (2005) Effects of Ge doping on micromorphology of MnSi in MnSi ~ 1.7 and on their thermoelectric transport properties. Jpn J Appl Phys 44:8562–8570

    Article  Google Scholar 

  13. Zhou AJ, Cui HG, Li JZ, Zhao XB (2011) Structure and morphology of induction-melted higher manganese silicide. Acta Phys Chim Sin 27:2915–2919

    Google Scholar 

  14. Zhou AJ, Zhu TJ, Zhao XB, Yang SH, Dasgupta T, Stiewe C, Hassdorf R, Mueller E (2010) Improved thermoelectric performance of higher manganese silicides with Ge additions. J Electron Mater 39:2002–2007

    Article  Google Scholar 

  15. Berche A, Tedenac JC, Jund P (2014) Thermodynamic modeling of the germanium-manganese system. Intermetallics 47:23–30

    Article  Google Scholar 

  16. Gorsse S, Bauer Pereira P, Decourt R, Sellier E (2009) Microstructure engineering design for thermoelectric materials: an approach to minimize thermal diffusivity. Chem Mater 22:988–993

    Article  Google Scholar 

  17. Gorsse S, Bellanger P, Bréchet Y, Sellier E, Umarji A, Ail U, Decourt R (2011) Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys. Acta Mater 59:7425–7437

    Article  Google Scholar 

  18. Bellanger P, Gorsse S, Bernard-Granger G, Navone C, Redjaimia A, Vivès S (2015) Effect of microstructure on the thermal conductivity of nanostructured Mg2(Si, Sn) thermoelectric alloys: an experimental and modeling approach. Acta Mater 95:102–110

    Article  Google Scholar 

  19. Perumal S, Gorsse S, Ail U, Prakasam M, Chevalier B, Umarji AM (2013) Thermoelectric properties of chromium disilicide prepared by mechanical alloying. J Mater Sci 48:6018–6024. doi:10.1007/s10853-013-7398-2

    Article  Google Scholar 

  20. Perumal S, Gorsse S, Ail U, Prakasam M, Vivès S, Decourt R, Umarji AM (2015) Microstructure engineering design for thermoelectric materials: an approach to minimize thermal diffusivity. Mater Lett 155:41–43

    Article  Google Scholar 

  21. Ail U, Gorsse S, Perumal S, Prakasam M, Umarji A, Vivès S, Bellanger P, Decourt R (2015) Thermal conductivity of β-FeSi2/Si endogenous composites formed by the eutectoid decomposition of α-Fe2Si5. J Mater Sci 50:6713–6718. doi:10.1007/s10853-015-9225-4

    Article  Google Scholar 

  22. Gorsse S, Vivès S, Bellanger P, Riou D, Laversenne L, Miraglia S, Clarke DR (2016) Multi-scale architectured thermoelectric materials in the Mg 2 (Si, Sn) system. Mater Lett 166:140–144

    Article  Google Scholar 

  23. Heinz NA, Ikeda T, Pei Y, Snyder GJ (2014) Applying quantitative microstructure control in advanced functional composites. Adv Funct Mater 24:2135–2153

    Article  Google Scholar 

  24. Vivès S, Bellanger P, Gorsse S, Wei C, Zhang Q, Zhao J-C (2014) Combinatorial approach based on interdiffusion experiments for the design of thermoelectrics: application to the Mg-2 (Si, Sn) alloys. Chem Mater 26:4334–4337

    Article  Google Scholar 

  25. Miyazaki Y, Igarashi D, Hayashi K, Kajitani T, Yubuta K (2008) Modulated crystal structure of chimney-ladder higher manganese silicides MnSiγ (γ ~ 1.74). Phys Rev B 78:214104

    Article  Google Scholar 

  26. Miyazaki Y, Saito Y, Hayashi K, Yubuta K, Kajitani T (2011) Preparation and Thermoelectric Properties of a Chimney-Ladder (Mn1-xFex)Siγ(γ ~ 1.7) Solid Solution. Jpn J Appl Phys 50:035804

    Article  Google Scholar 

  27. Kikuchi Y, Nakajo T, Hayashi K, Miyazaki Y (2014) High temperature X-ray diffraction study on incommensurate composite crystal MnSiγ - (3 + 1)-dimensional superspace approach. J Alloy Compd 616:263–267

    Article  Google Scholar 

  28. Ye HQ, Amelinckx S (1986) High-resolution electron microscopic study of manganese silicides MnSi2-x. J Solid State Chem 61:8–39

    Article  Google Scholar 

  29. Ashby MF (2010) Materials selection in mechanical design, 4th edn. Butterworth-Heinemann, Oxford, p 9781856176637

    Google Scholar 

  30. An T-H, Choi S-M, Seo W-S, Park C, Kim I-H, Kim S-U (2013) Effects of Spark Plasma Sintering Temperature on Thermoelectric Properties of Higher Manganese Silicide. J Electron Mater 42:2269–2273

    Article  Google Scholar 

  31. An T-H, Choi S-M, Seo W-S, Park C, Kim I-H, Kim S-U (2013) The effect of microstructure on the thermoelectric properties of polycrystalline higher manganese silicides. Jpn J Appl Phys 52:10MC11

    Article  Google Scholar 

  32. Chen X, Shi L, Zhou J, Goodenough JB (2015) Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides. J Alloy Compd 641:30–36

    Article  Google Scholar 

  33. Famengo A, Battiston S, Saleemi M, Boldrini S, Fiameni S, Agresti F, Toprak MS, Barison S, Fabrizio M (2013) Phase content influence on thermoelectric properties of manganese silicide-based materials for middle-high temperatures. J Electron Mater 42:2020–2024

    Article  Google Scholar 

  34. Itoh T, Yamada M (2009) Synthesis of thermoelectric manganese silicide by mechanical alloying and pulse discharge sintering. J Electron Mater 38:925–929

    Article  Google Scholar 

  35. Luo W, Li H, Yan Y, Lin Z, Tang X, Zhang Q, Uher C (2011) Rapid synthesis of high thermoelectric performance higher manganese silicide with in situ formed nano-phase of MnSi. Intermetallics 19:404–408

    Article  Google Scholar 

  36. X. Shi, Z. Zamanipour, K.F. Ede, J.S. Krasinski, D. Vashaee, Enhancement of Thermoelectric Efficiency of MnSi1.75 with the Addition of Externally Processed Nanostructured MnSi, IEEE Green Technologies Conference (2012) 6200930

  37. X. Shi, Z. Zamanipour, A.M. Dehkordi, K.F. Ede, J.S. Krasinski, D. Vashaee, Cost Effective Synthesis of Bulk Thermoelectric Higher Manganese Silicide for Waste Heat Recovery and Environmental Protection, IEEE Green Technologies Conference (2012) 6200929

  38. Truong DYN, Kleinke H, Gascoin F (2015) Preparation of pure higher manganese silicides through wet ball milling and reactive sintering with enhanced thermoelectric properties. Intermetallics 66:127–132

    Article  Google Scholar 

  39. Zamanipour Z, Shi X, Mozafari M, Krasinski JS, Tayebi L, Vashaee D (2013) Synthesis, characterization, and thermoelectric properties of nanostructured bulk p-type MnSi1.73, MnSi1.75, and MnSi1.77. Ceram Int 39:2353–2358

    Article  Google Scholar 

  40. Zhou AJ, Zhao XB, Zhu TJ, Yang SH, Dasgupta T, Stiewe C, Hassdorf R, Mueller E (2010) Microstructure and thermoelectric properties of SiGe-added higher manganese silicides. Mater Chem Phys 124:1001–1005

    Article  Google Scholar 

  41. Chen X, Weathers A, Salta D, Zhang L, Zhou J, Goodenough JB, Shi L (2013) Effects of (Al, Ge) double doping on the thermoelectric properties of higher manganese silicides. J Appl Phys 114:173705

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the French National Research Agency (ANR-12-PRGE-0010-01 PHIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gorsse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivès, S., Navone, C., Gaudin, E. et al. Improved microstructure and thermoelectric properties of higher manganese silicide processed by reactive spark plasma sintering. J Mater Sci 52, 12826–12833 (2017). https://doi.org/10.1007/s10853-017-1397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1397-7

Keywords

Navigation