Skip to main content

Advertisement

Log in

Facile microwave approach to controllable boron nitride quantum dots

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Boron nitride quantum dots (BNQDs), as promising metal-free quantum dots with unique photoelectric properties, have been controllably fabricated by a facile and high-efficiency microwave irradiation technique in this work. Though a number of attempts have been reported so far, it remains challenging to explore an effective approach to synthesize high-quality BNQDs with uniform size, well dispersion and high quantum yield (QY). Microwave irradiation strategy is identified as an advanced and beneficial method not only for high-efficiency energy inputting but also time-saving in comparison with the reported solvothermal process. Encouragingly, the particle size and QY of BNQDs can be well controlled by adjusting microwave reaction temperature as well as duration time. The average diameter of the as-prepared blue luminescent BNQDs ranges from 1.98 to 7.05 nm with QY up to 23.44%. Furthermore, attributed to the unique nanostructure, quantum confinement effect, and high dielectric loss, the as-prepared BNQDs exhibits an optimal reflection loss of −19.6 dB at 8.9 GHz with a broad effective absorption bandwidth of 5.02 GHz in the frequency range of 2–18 GHz, demonstrating as potential microwave absorption material in electromagnetic interference field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    Article  Google Scholar 

  2. Bao L, Liu C, Zhang ZL, Pang DW (2015) Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv Mater 27(10):1663–1667

    Article  Google Scholar 

  3. Bloom BP, Mendis MN, Wierzbinski E, Waldeck DH (2016) Eliminating fermi-level pinning in PbS quantum dots using an alumina interfacial layer. J Mater Chem C 4(4):704–712

    Article  Google Scholar 

  4. Bu X, Zhou Y, Zhang T, He M (2014) Preparation of optically active substituted polyacetylene@CdSe quantum dots composites and their application for low infrared emissivity. J Mater Sci 49(20):7133–7142. doi:10.1007/s10853-014-8421-y

    Article  Google Scholar 

  5. Mirnajafizadeh F, Wang F, Reece P, Stride JA (2016) Synthesis of type-II CdSe(S)/Fe2O3 core/shell quantum dots: the effect of shell on the properties of core/shell quantum dots. J Mater Sci 51(11):5252–5258. doi:10.1007/s10853-016-9828-4

    Article  Google Scholar 

  6. Bu X, Zhou Y, He M, Chen Z, Zhang T (2013) Bioinspired, direct synthesis of aqueous CdSe quantum dots for high-sensitive copper(II) ion detection. Dalton Trans 42(43):15411–15420

    Article  Google Scholar 

  7. Singh S, Kumari R, Chakraborty A, Hussain S, Singh MK, Das P (2016) Melamine-DNA encoded periodicity of quantum dot arrays. J Colloid Interface Sci 461:45–49

    Article  Google Scholar 

  8. Moura I, de Sa A, Abreu AS, Oliveira M, Machado AV (2016) Morphology, optical, and electric properties of polymer-quantum dots nanocomposites: effect of polymeric matrix. J Mater Sci 51(18):8699–8710. doi:10.1007/s10853-016-0129-8

    Article  Google Scholar 

  9. Xie Z, Du Q, Wu Y, Hao X, Liu C (2016) Full-band UV shielding and highly daylight luminescent silane-functionalized graphene quantum dot nanofluids and their arbitrary polymerized hybrid gel glasses. J Mater Chem C 4(41):9879–9886

    Article  Google Scholar 

  10. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6):5102–5110

    Article  Google Scholar 

  11. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957

    Article  Google Scholar 

  12. Sathish M, Mitani S, Tomai T, Honma I (2014) Supercritical fluid assisted synthesis of N-doped graphene nanosheets and their capacitance behavior in ionic liquid and aqueous electrolytes. J Mater Chem A 2(13):4731–4738

    Article  Google Scholar 

  13. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134(1):15–18

    Article  Google Scholar 

  14. Bandyopadhyay A, Yamijala SSRKC, Pati SK (2013) Tuning the electronic and optical properties of graphene and boron-nitride quantum dots by molecular charge-transfer interactions: a theoretical study. Phys Chem Chem Phys 15(33):13881–13887

    Article  Google Scholar 

  15. Qu L-H, Zhang J-M, Xu K-W (2013) First-principles study of single-layer C-terminated BN quantum dots. Phys E Low Dimens Syst Nanostructures 53:115–119

    Article  Google Scholar 

  16. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. Acs Catal 2(5):781–794

    Article  Google Scholar 

  17. Zhang J, Xie W, Xu X, Zhang S, Zhao J (2016) Structural and electronic properties of interfaces in graphene and hexagonal boron nitride lateral heterostructures. Chem Mater 28(14):5022–5028

    Article  Google Scholar 

  18. Zhou XJ, Zhang Y, Wang C, Wu XC, Yang YQ, Zheng B, Wu HX, Guo SW, Zhang JY (2012) Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6(8):6592–6599

    Article  Google Scholar 

  19. Wu X, Guo S, Zhang J (2016) Auigraphene quantum dots/ferroferric oxide composites as catalysts for the solvent-free oxidation of alcohols. Mater Lett 183:227–231

    Article  Google Scholar 

  20. Yu T, Wang F, Xu Y, Ma L, Pi X, Yang D (2016) Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors. Adv Mater 28(24):4912–4919

    Article  Google Scholar 

  21. Lin L, Xu Y, Zhang S, Ross IM, Ong ACM, Allwood DA (2014) Fabrication and luminescence of monolayered boron nitride quantum dots. Small 10(1):60–65

    Article  Google Scholar 

  22. Li H, Tay RY, Tsang SH, Zhen X, Teo EHT (2015) Controllable synthesis of highly luminescent boron nitride quantum dots. Small 11(48):6491–6499

    Article  Google Scholar 

  23. Lei Z, Xu S, Wan J, Wu P (2015) Facile preparation and multifunctional applications of boron nitride quantum dots. Nanoscale 7(45):18902–18907

    Article  Google Scholar 

  24. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8):1358–1374

    Article  Google Scholar 

  25. Li L-L, Ji J, Fei R, Wang C-Z, Lu Q, Zhang J-R, Jiang L-P, Zhu J-J (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Func Mater 22(14):2971–2979

    Article  Google Scholar 

  26. Zhu G, Pan L, Xu T, Zhao Q, Lu B, Sun Z (2011) Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells. Nanoscale 3(5):2188–2193

    Article  Google Scholar 

  27. Washington AL II, Strouse GF (2009) Microwave synthetic route for highly emissive TOP/TOP-S passivated CdS quantum dots. Chem Mater 21(15):3586–3592

    Article  Google Scholar 

  28. Xuan TT, Wang XJ, Zhu G, Li HL, Pan LK, Sun Z (2013) One-step microwave-assisted synthesis of water soluble CdSe quantum dots for white light-emitting diodes with excellent color rendering. J Alloys Compd 558:105–108

    Article  Google Scholar 

  29. Fitzmorris RC, Oleksak RP, Zhou Z, Mangum BD, Kurtin JN, Herman GS (2015) Structural and optical characterization of CuInS2 quantum dots synthesized by microwave-assisted continuous flow methods. J Nanoparticle Res 17(7):319

    Article  Google Scholar 

  30. Afrasiabi R, Sugunan A, Shahid R, Toprak MS, Muhammed M Microwave mediated synthesis of semiconductor quantum dots. In: Lourdudoss S, Marcinkevicius S, Kataria H (eds) Physica Status solidi C: current topics in solid state physics, vol 9, No 72012, pp 1551–1556

  31. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7):2118–2122

    Article  Google Scholar 

  32. Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4):1146–1152

    Article  Google Scholar 

  33. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23(6):776–780

    Article  Google Scholar 

  34. Thangasamy P, Santhanam M, Sathish M (2016) Supercritical fluid facilitated disintegration of hexagonal boron nitride nanosheets to quantum dots and its application in cells imaging. ACS Appl Mater Interfaces 8(29):18647–18651

    Article  Google Scholar 

  35. Mahule TS, Srinivasu VV, Das J (2016) Observation of low field microwave absorption in co-doped ZnO system. Solid State Commun 243:60–64

    Article  Google Scholar 

  36. Huang TY, He M, Zhou YM, Li SW, Ding BB, Pan WL, Huang S, Tong Y (2016) Solvothermal synthesis of flower-like CoS hollow microspheres with excellent microwave absorption properties. RSC Adv 6(102):100392–100400

    Article  Google Scholar 

  37. Tan KH, Ahmad R, Johan MR (2013) Electromagnetic and microwave absorbing properties of amorphous carbon nanotube-cadmium selenide quantum dot hybrids. Mater Chem Phys 139(1):66–72

    Article  Google Scholar 

  38. Sun D, Zou Q, Wang Y, Wang Y, Jiang W, Li F (2014) Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6(12):6557–6562

    Article  Google Scholar 

  39. Che RC, Peng LM, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16(5):401–405

    Article  Google Scholar 

  40. Zhang K, Gao X, Zhang Q, Li T, Chen X (2017) Pitch carbon coating graphene/carbon nanotubes lightweight composite and their excellent microwave absorption capacity. J Mater Sci Mater Electron 28(2):1352–1358

    Article  Google Scholar 

  41. Rubrice K, Castel X, Himdi M, Parneix P (2016) Dielectric characteristics and microwave absorption of graphene composite materials. Materials 9(10):825

    Article  Google Scholar 

  42. Sun G, Dong B, Cao M, Wei B, Hu C (2011) Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 23(6):1587–1593

    Article  Google Scholar 

  43. Zou CW, Yao YD, Wei ND, Gong YC, Fu WD, Wang M, Jiang L, Liao XM, Yin GF, Huang ZB, Chen XC (2015) Electromagnetic wave absorption properties of mesoporous Fe3O4/C nanocomposites. Compos B Eng 77:209–214

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports of National Natural Science Foundation of China (51673040, 21306023, 21676056 and 21376051), The Prospective Joint Research Project of Jiangsu Province (BY2016076-01), The Fundamental Research Funds for the Central Universities (3207046302), and The Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China (BA2016105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zhou, Y., He, M. et al. Facile microwave approach to controllable boron nitride quantum dots. J Mater Sci 52, 13522–13532 (2017). https://doi.org/10.1007/s10853-017-1395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1395-9

Keywords

Navigation