Skip to main content
Log in

Microstructural evolution of ion-irradiated sol–gel-derived thin films

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporated silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. In addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Balgude D, Sabnis A (2012) Sol–gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys. J Solgel Sci Technol 64:124–134

    Article  Google Scholar 

  2. Liu X, Li YL, Hou F (2009) Fabrication of SiOC ceramic microparts and patterned structures from polysiloxanes via liquid cast and pyrolysis. J Am Ceram Soc 92:49–53

    Article  Google Scholar 

  3. Kim YW, Kim SH, Wang C, Park CB (2003) Fabrication of microcellular ceramics using gaseous carbon dioxide. J Am Ceram Soc 86:2231–2233

    Article  Google Scholar 

  4. Mehner A, Zoch H-W, Datchary W Pongs G, Kunzmann H (2006) Sol–gel coatings for high precision optical molds. CIRP Ann Manuf Technol 55:589–592

    Article  Google Scholar 

  5. Prenzel T, Mehner A, Lucca DA, Qi Y, Harriman TA, Mutlugünes Y, Shojaee SA, Wang YQ, Williams D, Nastasi M, Zoch H-W, Swiderek P (2013) Chemical and mechanical properties of silica hybrid films from NaOH catalyzed sols for micromachining with diamond cutting tools. Thin Solid Films 531:208–216

    Article  Google Scholar 

  6. Mittal VK, Lotha S, Avasthi DK (1999) Hydrogen loss under heavy ion irradiation in polymers. Radiat Eff Defects Solids 147:199–209

    Article  Google Scholar 

  7. Schwarz F, Thorwarth G, Stritzker B (2009) Synthesis of silver and copper nanoparticle containing a-C:H by ion irradiation of polymers. Solid State Sci 11:1819–1823

    Article  Google Scholar 

  8. Fink D, Alegaonkar PS, Petrov AV, Wilhelm M, Szimkowiak P, Behar M, Sinha D, Fahrner WR, Hoppe K, Chadderton LT (2005) High energy ion beam irradiation of polymers for electronic applications. Nucl Instr Meth B 236:11–20

    Article  Google Scholar 

  9. Calcagno L (1991) Ion irradiation of polymers. Nucl Instr Meth B B59(60):1153–1158

    Article  Google Scholar 

  10. Calcagno L, Compagnini G, Foti G (1992) Structural modification of polymer films by ion irradiation. Nucl Instr Meth B 65:413–422

    Article  Google Scholar 

  11. Qi Y, Prenzel T, Harriman TA, Wang YQ, Lucca DA, Williams D, Nastasi M, Dong J, Mehner A (2010) Investigation of hydrogen concentration and hardness of ion irradiated organically modified silicate thin film. Nucl Instr Meth B 268:1997–2000

    Article  Google Scholar 

  12. Lucca DA, Qi Y, Harriman TA, Prenzel T, Wang YQ, Nastasi M, Dong J, Mehner A (2010) Effects of ion irradiation on the mechanical properties of SiNawOxCyHz sol–gel derived thin films. Nucl Instr Meth B 268:2926–2929

    Article  Google Scholar 

  13. Ghisleni R, Lucca DA, Nastasi M, Shao L, Wang YQ, Dong J, Mehner A (2007) Effect of electronic stopping on the irradiation-induced changes in hybrid modified silicate thin films. Nucl Instr Meth B 257:581–584

    Article  Google Scholar 

  14. Ghisleni R, Lucca DA, Wang YQ, Lee J-K, Nastasi M, Dong J, Mehner A (2008) Ion irradiation effects on surface mechanical behavior and shrinkage of hybrid sol–gel derived silicate thin films. Nucl Instr Meth B 266:2453–2456

    Article  Google Scholar 

  15. Santucci S, Di Nardo S, Lozzi L, Passacantando M, Picozzi P (1995) XPS analysis on SiO2 sol–gel thin films. J Electron Spectros Relat Phenomena 76:623–628

    Article  Google Scholar 

  16. Lucca DA, Ghisleni R, Lee J-K, Wang YQ, Nastasi M, Dong J, Mehner A (2008) Effects of ion irradiation on the structural transformation of sol–gel derived TEOS/MTES thin films. Nucl Instr Meth B 266:2457–2460

    Article  Google Scholar 

  17. Suyal N, Hoebbel D, Mennig M, Schmidt H (1999) A solid state 29Si and 13C NMR study on the synthesis of thin silicon–oxycarbide glass sheets by a sol–gel route. J Mater Chem 9:3061–3067

    Article  Google Scholar 

  18. Morcos RM, Navrotsky A, Varga T, Blum Y, Ahn D, Poli F, Müller K, Raj R (2008) Energetics of SixOyCz polymer-derived ceramics prepared under varying conditions. J Am Ceram Soc 91:2969–2974

    Article  Google Scholar 

  19. Yan M, Song W, Zhao-hui C (2010) Raman spectroscopy studies of the high-temperature evolution of the free carbon phase in polycarbosilane derived SiC ceramics. Ceram Int 36:2455–2459

    Article  Google Scholar 

  20. Karakuscu A, Guider R, Pavesi L, Soraru GD (2009) White luminescence from sol–gel-derived SiOC thin films. J Am Ceram Soc 92:2969–2974

    Article  Google Scholar 

  21. Compagnini G, Battiato S, Puglisi O, Baratta GA, Strazzulla G (2005) Ion irradiation of sp rich amorphous carbon thin films: a vibrational spectroscopy investigation. Carbon 43:3025–3028

    Article  Google Scholar 

  22. Awazu K, Kawazoe H (2003) Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses. J Appl Phys 94:6243–6262

    Article  Google Scholar 

  23. Widgeon SJ, Sen S, Mera G, Ionescu E, Riedel R, Navrotsky A (2010) 29Si and 13C solid-state NMR spectroscopic study of nanometer-scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics. Chem Mater 22:6221–6228

    Article  Google Scholar 

  24. Shojaee SA, Qi Y, Wang YQ, Mehner A, Lucca DA (2017) Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films. Sci Rep 6:40100–40113

    Article  Google Scholar 

  25. Oliver MS, Dubois G, Sherwood M, Gage DM, Dauskardt RH (2010) Molecular origins of the mechanical behavior of hybrid glasses. Adv Funct Mater 20:2884–2892

    Article  Google Scholar 

  26. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  Google Scholar 

  27. Pivin JC, Colombo P (1997) Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes Part II Hardness and thermochemical stability. J Mater Sci 32:6175–6182

    Article  Google Scholar 

  28. Venkatesan T, Wolf T, Allara D, Wilkens BJ, Taylor GN (1983) Synthesis of novel inorganic films by ion beam irradiation of polymer films. Appl Phys Lett 43:934–936

    Article  Google Scholar 

  29. Gelamo RV, Bica de Moraes MA, Trasferetti BC, Rouxinol FP, Davanzo CU (2005) Modification of plasma-polymerized organosiloxane films by irradiation with He+, Ne+, Ar+, and Kr+ ions. Chem Mater 17:5789–5797

    Article  Google Scholar 

  30. Levine TE (1994) Ion-beam-induced densification of sol–gel ceramic thin films. J Vac Sci Technol, B 12:986–990

    Article  Google Scholar 

  31. Canut B, Teodorescu V, Roger J, Blanchin M, Daoudi K, Sandu C (2002) Radiation-induced densification of sol–gel SnO2: Sb films. Nucl Instrum Methods Phys Res B 191:783–788

    Article  Google Scholar 

  32. Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non Cryst Solids 316:309–319

    Article  Google Scholar 

  33. Lee HJ, Oh KS, Choi CK (2003) The mechanical properties of the SiOC(-H) composite thin films with a low dielectric constant. Surf Coat Technol 171:296–301

    Article  Google Scholar 

  34. Kaspar J, Terzioglu C, Ionescu E, Graczyk-Zajac M, Hapis S, Kleebe H-J, Riedel R (2014) Stable SiOC/Sn nanocomposite anodes for lithium-ion batteries with outstanding cycling stability. Adv Funct Mater 24:4097–4104

    Article  Google Scholar 

  35. Garrido B, Samitier J, Bota S, Moreno JA, Montserrat J, Morante JR (1997) Reconstruction of the SiO2 structure damaged by low-energy Ar-implanted ions. J Appl Phys 81:126–134

    Article  Google Scholar 

  36. Lehmann A, Schumann L, Hübner K (1983) Optical phonons in amorphous silicon oxides. I. calculation of the density of states and interpretation of LO–TO splittings of amorphous SiO2. Phys Status Solidi B 117:689–698

    Article  Google Scholar 

  37. Zheng L, An Q, Fu R, Ni S, Luo S-N (2006) Densification of silica glass at ambient pressure. J Chem Phys 125:154511–154517

    Article  Google Scholar 

  38. An Q, Zheng L, Luo S-N (2006) Vacancy-induced densification of silica glass. J Non Cryst Solids 352:3320–3325

    Article  Google Scholar 

  39. Kim Y-H, Hwang MS, Kim HJ et al (2001) Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films. J Appl Phys 90:3367–3370

    Article  Google Scholar 

  40. Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein T (2000) Conversion of some siloxane polymers to silicon oxide by UV/Ozone photochemical processes. Chem Mater 12:1591–1596

    Article  Google Scholar 

  41. O’Hare L-A, Hynes A, Alexander MR (2007) A methodology for curve-fitting of the XPS Si 2p core level from thin siloxane coatings. Surf Interface Anal 39:926–936

    Article  Google Scholar 

  42. Sorarù GD, D’Andrea G, Glisenti A (1996) XPS characterization of gel-derived silicon oxycarbide glasses. Mater Lett 27:1–5

    Article  Google Scholar 

  43. Corriu RJP, Leclercq D, Mutin PH, Vioux A (1997) Preparation and structure of silicon oxycarbide glasses derived from polysiloxane precursors. J Solgel Sci Technol 8:327–330

    Google Scholar 

  44. Liu Y, Ren W, Zhang L, Yao X (1999) New method for making porous SiO2 thin films. Thin Solid Films 353:124–128

    Article  Google Scholar 

  45. Marchon B, Gui J, Grannen K, Rauch GC, Ager JW III, Silva SRP, Robertson J (1997) Photoluminescence and Raman spectroscopy in hydrogenated carbon films. IEEE Trans Magn 33:3148–3150

    Article  Google Scholar 

  46. Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  Google Scholar 

  47. Matthews M, Pimenta M, Dresselhaus G, Dresselhaus M, Endo M (1999) Origin of dispersive effects of the Raman D band in carbon materials. Phys Rev B 59:R6585–R6588

    Article  Google Scholar 

  48. Herdman JD, Connelly BC, Smooke MD, Long MB, Miller JH (2011) A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames. Carbon 49:5298–5311

    Article  Google Scholar 

  49. Lee Y-J (2004) The second order Raman spectroscopy in carbon crystallinity. J Nucl Mater 325:174–179

    Article  Google Scholar 

  50. Casiraghi C, Ferrari AC, Robertson J (2005) Raman spectroscopy of hydrogenated amorphous carbons. Phys Rev B 72:85401–85414

    Article  Google Scholar 

  51. Saha A, Raj R, Williamson DL (2006) A model for the nanodomains in polymer-derived SiCO. J Am Ceram Soc 89:2188–2195

    Google Scholar 

  52. Saha A, Raj R (2007) Crystallization maps for SiCO amorphous ceramics. J Am Ceram Soc 90:578–583

    Article  Google Scholar 

  53. Mera G, Navrotsky A, Sen S, Kleebe H-J, Riedel R (2013) Polymer-derived SiCN and SiOC ceramics—structure and energetics at the nanoscale. J Mater Chem A 1:3826–3836

    Article  Google Scholar 

  54. Heinig KH, Müller T, Schmidt B, Strobel M, Möller W (2003) Interfaces under ion irradiation: growth and taming of nanostructures. Appl Phys A Mater Sci Process 77:17–25

    Article  Google Scholar 

  55. Reiss S, Heinig KH (1994) Ostwald ripening during ion beam synthesis—a computer simulation for inhomogeneous systems. Nucl Instr Meth B 84:229–233

    Article  Google Scholar 

  56. Tripathi A, Kumar A, Singh F, Kabiraj D, Avasthi DK, Pivin JC (2005) Ion irradiation induced surface modification studies of polymers using SPM. Nucl Instr Meth B 236:186–194

    Article  Google Scholar 

  57. Kumar A, Singh F, Pivin JC, Avasthi DK (2007) Fabrication of carbon nanostructures (nanodots, nanowires) by energetic ion irradiation. J Phys D Appl Phys 40:2083–2088

    Article  Google Scholar 

  58. Kumar A, Singh F, Khan SA, Agarwal DC, Tripathi A, Avasthi DK, Pivin JC (2006) Precipitation of semiconducting carbon nanoparticles in ion irradiated gels. Nucl Instr Meth B 244:23–26

    Article  Google Scholar 

  59. Ni Z, Li Q, Zhu D, Gong J (2006) Fabrication of carbon nanowire networks by Si ion beam irradiation. Appl Phys Lett 89:053107

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Foundation for providing financial support for this project (Grants Nos. OISE-0352377 and OISE-0128050). The financial support from the Deutsche Forschungsgemeinschaft in Transregionaler Sonderforschungsbereich SFB/TR4 is also gratefully acknowledged. This work was partially performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Lucca.

Ethics declarations

Conflicts of interest

The authors certify that they have no conflict of interest to report.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2017_1386_MOESM1_ESM.pdf

The Raman spectra of the ion-irradiated and heat-treated films without carbon related D and G Raman modes (Fig. S.1) and the XPS Si 2p spectra of the N2+ irradiated films with fluences of 1013 and 5 × 1015 ions cm- −2 (Fig. S.2). (PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaee, S.A., Qi, Y., Wang, Y.Q. et al. Microstructural evolution of ion-irradiated sol–gel-derived thin films. J Mater Sci 52, 12109–12120 (2017). https://doi.org/10.1007/s10853-017-1386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1386-x

Keywords

Navigation