Skip to main content
Log in

Effect of ferrocene catalyst particle size on structural and morphological characteristics of carbon nanotubes grown by microwave oven

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of catalyst particle size on the formation and diameter of carbon nanotubes (CNTs) is investigated. Ferrocene catalyst with an average diameter of 19.7, 21.4, 23.6 and 27.0 µm is used for the growth of CNTs by a cost-effective and facile method using microwave oven. Morphological observations by transmission electron microscopy and field emission scanning electron microscopy reveal consistently that smaller catalyst diameter generates CNTs with smaller diameter. Raman spectroscopy indicates that the full width at half maximum of G-, D- and 2D-bands decreases gradually with increasing CNTs diameter; meanwhile, G-band/D-band intensity ratio is found to be sensitive to crystal defects, showing a drop for CNTs diameter in the range 25–40 nm then followed by a slight increase for higher diameters. This may be associated with CNTs curvature and strain which developed along tube walls. X-ray diffraction analysis demonstrates an increase in d (002) interlayer spacing with decreasing CNTs diameter. Furthermore, CNTs diameter is found to be inversely proportional to (002) linewidth. Finally, the energy band gap estimated from UV–NIR–Vis measurements increases slightly with CNTs diameter, 5.69–5.84 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Köhler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8):927–937

    Article  Google Scholar 

  2. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884

    Article  Google Scholar 

  3. Zhang X, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4(3):707–714

    Article  Google Scholar 

  4. Xie H, Poyraz S, Thu M, Liu Y, Snyder EY, Smith JW, Zhang X (2014) Microwave-assisted fabrication of carbon nanotubes decorated polymeric nano-medical platforms for simultaneous drug delivery and magnetic resonance imaging. RSC Adv 4(11):5649–5652

    Article  Google Scholar 

  5. Jones D, Lelyveld T, Mavrofidis S, Kingman S, Miles N (2002) Microwave heating applications in environmental engineering—a review. Resour Conserv Recycl 34(2):75–90

    Article  Google Scholar 

  6. Liu Z, Wang J, Kushvaha V, Poyraz S, Tippur H, Park S, Kim M, Liu Y, Bar J, Chen H (2011) Poptube approach for ultrafast carbon nanotube growth. Chem Commun 47(35):9912–9914

    Article  Google Scholar 

  7. Poyraz S, Liu Z, Liu Y, Zhang X (2013) Devulcanization of scrap ground tire rubber and successive carbon nanotube growth by microwave irradiation. Curr Org Chem 17(20):2243–2248

    Article  Google Scholar 

  8. Poyraz S, Zhang L, Schroder A, Zhang X (2015) Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Appl Mater Interfaces 7(40):22469–22477

    Article  Google Scholar 

  9. Liu Z, Zhang L, Poyraz S, Smith J, Kushvaha V, Tippur H, Zhang X (2014) An ultrafast microwave approach towards multi-component and multi-dimensional nanomaterials. RSC Adv 4(18):9308–9313

    Article  Google Scholar 

  10. Odom TW, Huang J-L, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64

    Article  Google Scholar 

  11. Cabria I, Mintmire J, White C (2003) Metallic and semiconducting narrow carbon nanotubes. Phys Rev B 67(12):121406

    Article  Google Scholar 

  12. Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106(10):2429–2433

    Article  Google Scholar 

  13. Nasibulin AG, Pikhitsa PV, Jiang H, Kauppinen EI (2005) Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 43(11):2251–2257

    Article  Google Scholar 

  14. Ago H, Komatsu T, Ohshima S, Kuriki Y, Yumura M (2000) Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl Phys Lett 77(1):79–81

    Article  Google Scholar 

  15. Schäffel F, Kramberger C, Rümmeli MH, Grimm D, Mohn E, Gemming T, Pichler T, Rellinghaus B, Büchner B, Schultz L (2007) Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem Mater 19(20):5006–5009

    Article  Google Scholar 

  16. Antunes E, Lobo A, Corat E, Trava-Airoldi V (2007) Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes. Carbon 45(5):913–921

    Article  Google Scholar 

  17. Singh DK, Iyer P, Giri P (2010) Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diam Relat Mater 19(10):1281–1288

    Article  Google Scholar 

  18. Mondal A, Agrawal D, Upadhyaya A (2008) Microwave heating of pure copper powder with different particle size and porosity. In: Global congress on microwave energy application, Japan

  19. Bai X, Li D, Wang Y, Liang J (2005) Effects of temperature and catalyst concentration on the growth of aligned carbon nanotubes. Tsinghua Sci Technol 10(6):729–735

    Article  Google Scholar 

  20. Shamsudin M, Asli N, Abdullah S, Yahya S, Rusop M (2012) Effect of synthesis temperature on the growth iron-filled carbon nanotubes as evidenced by structural, micro-raman, and thermogravimetric analyses. Adv Condens Matter Phys 2012:1–7

    Article  Google Scholar 

  21. Tuinstra F, Koenig J (1970) Characterization of graphite fiber surfaces with Raman spectroscopy. J Compos Mater 4(4):492–499

    Article  Google Scholar 

  22. Ebbesen T, Takada T (1995) Topological and sp 3 defect structures in nanotubes. Carbon 33(7):973–978

    Article  Google Scholar 

  23. Reznik D, Olk C, Neumann D, Copley J (1995) X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys Rev B 52(1):116

    Article  Google Scholar 

  24. Davis JA, Leckie JO (1978) Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J Colloid Interface Sci 67(1):90–107

    Article  Google Scholar 

  25. Liu M, Cowley JM (1994) Structures of carbon nanotubes studied by HRTEM and nanodiffraction. Ultramicroscopy 53(4):333–342

    Article  Google Scholar 

  26. Kiang C-H, Endo M, Ajayan P, Dresselhaus G, Dresselhaus M (1998) Size effects in carbon nanotubes. Phys Rev Lett 81(9):1869

    Article  Google Scholar 

  27. Maciel IO, Anderson N, Pimenta MA, Hartschuh A, Qian H, Terrones M, Terrones H, Campos-Delgado J, Rao AM, Novotny L (2008) Electron and phonon renormalization near charged defects in carbon nanotubes. Nat Mater 7(11):878–883

    Article  Google Scholar 

  28. Butler M (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys 48(5):1914–1920

    Article  Google Scholar 

  29. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709

    Article  Google Scholar 

  30. Avouris P (2002) Carbon nanotube electronics. Chem Phys 281(2):429–445

    Article  Google Scholar 

  31. Guo G, Chu K, Wang D-S, Duan C-G (2004) Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys Rev B 69(20):205416

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Department of Physics at Universiti Sains Malaysia for the help and support for the achievement of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natheer A. Algadri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algadri, N.A., Hassan, Z., Ibrahim, K. et al. Effect of ferrocene catalyst particle size on structural and morphological characteristics of carbon nanotubes grown by microwave oven. J Mater Sci 52, 12772–12782 (2017). https://doi.org/10.1007/s10853-017-1381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1381-2

Keywords

Navigation