Skip to main content
Log in

Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs)

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The metal-matrix composites/nano-composites (MMCs/MMNCs) reinforced with hard ceramic particulates have received a tremendous attention due to their potential improvements in physical and mechanical performances. In the present work, we have comprehensively collected currently available experimental data sets of Al-based MMCs/MMNCs and have carried out thorough analyses to quantitatively address the impacts of the reinforcement volume fractions, reinforcement particle sizes, and metal-matrix grain sizes on their mechanical properties including the yield strength, ultimate strength, and strain to failure of composites. We also performed a quantitative analysis on the strengthening mechanisms of Al MMNCs to reveal that the grain refinement can play a major role in increasing the strength of composites. Al-based MMC or MMNC materials generally exhibited an indirect relationship between the strength increase and strain-to-failure increase. The results include a critical comparison for the mechanical performance of particulate-reinforced composites for both pure and alloyed Al matrices to elucidate the contemporary status of Al MMC and MMNC materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rohatgi PK, Asthana R, Das S (1986) Solidification, structures, and properties of cast metal-ceramic particle composites. Int Metals Rev 31(1):115–139

    CAS  Google Scholar 

  2. Stefanescu DM, Dhindaw BK, Kacar SA, Moitra A (1988) Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites. Metall Trans A 19(11):2847–2855

    Article  Google Scholar 

  3. Ferguson JB, Thao X, Rohatgi PK, Cho K, Kim CS (2014) Computational and analytical prediction of the elastic modulus and yield stress in particulate-reinforced metal matrix composites. Scripta Mater 83:45–48

    Article  CAS  Google Scholar 

  4. Srinivasarao B, Suryanarayana C, Oh-Ishi K, Hono K (2009) Microstructure and mechanical properties of Al–Zr nanocomposite materials. Mater Sci Eng A 518(1):100–107

    Article  CAS  Google Scholar 

  5. Breslin MC, Ringnalda J, Xu L, Fuller M, Seeger J, Daehn GS, Otani T, Fraser HL (1995) Processing, microstructure, and properties of co-continuous alumina–aluminum composites. Mater Sci Eng A 195:113–119

    Article  Google Scholar 

  6. Halverson DC, Pyzik AJ, Aksay IA, Snowden WE (1989) Processing of boron carbide-aluminum composites. J Am Ceram Soc 72(5):775–780

    Article  CAS  Google Scholar 

  7. Nardone VC, Prewo KM (1986) On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Mater 20(1):43–48

    Article  CAS  Google Scholar 

  8. Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453

    Article  CAS  Google Scholar 

  9. Rawal SP (2001) Metal-matrix composites for space applications. JOM 53(4):14–17

    Article  CAS  Google Scholar 

  10. Aghajanian MK, Rocazella MA, Burke JT, Keck SD (1991) The fabrication of metal matrix composites by a pressureless infiltration technique. J Mater Sci 26(2):447–454. doi:10.1007/BF00576541

    Article  CAS  Google Scholar 

  11. Clyne TW, Mason JF (1987) The squeeze infiltration process for fabrication of metal-matrix composites. Metall Trans A 18(8):1519–1530

    Article  Google Scholar 

  12. Hashim J, Looney L, Hashmi MS (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92:1–7

    Article  Google Scholar 

  13. Kong CY, Soar RC (2005) Fabrication of metal–matrix composites and adaptive composites using ultrasonic consolidation process. Mater Sci Eng A 412(1):12–18

    Article  CAS  Google Scholar 

  14. Min SO (2009) Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans Nonferrous Met Soc China 19(6):1400–1404

    Article  CAS  Google Scholar 

  15. Koli DK, Agnihotri G, Purohit R (2014) A review on properties, behaviour and processing methods for Al-nano Al2O3 composites. Procedia Mater Sci 6:567–589

    Article  CAS  Google Scholar 

  16. Rahimian M, Parvin N, Ehsani N (2011) The effect of production parameters on microstructure and wear resistance of powder metallurgy Al–Al2O3 composite. Mater Des 32(2):1031–1038

    Article  CAS  Google Scholar 

  17. Su H, Gao W, Feng Z, Lu Z (2012) Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater Des 36:590–596

    Article  CAS  Google Scholar 

  18. Huang X, Kamikawa N, Hansen N (2008) Strengthening mechanisms in nanostructured aluminum. Mater Sci Eng A 483:102–104

    Article  CAS  Google Scholar 

  19. Shanmugasundaram T, Heilmaier M, Murty BS, Sarma VS (2010) On the Hall-Petch relationship in a nanostructured Al–Cu alloy. Mater Sci Eng A 527(29):7821–7825

    Article  CAS  Google Scholar 

  20. Weertman JR (1993) Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A 166(1–2):161–167

    Article  Google Scholar 

  21. Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng 483:148–152

    Article  CAS  Google Scholar 

  22. Yar AA, Montazerian M, Abdizadeh H, Baharvandi HR (2009) Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J Alloys Compd 484(1):400–404

    Article  CAS  Google Scholar 

  23. Arsenault RJ (1991) Strengthening mechanisms in particulate MMC: remarks on a paper by Miller and Humphreys. Scripta Mater 25(11):2617–2621

    Article  CAS  Google Scholar 

  24. Miller WS, Humphreys FJ (1991) Strengthening mechanisms in particulate metal matrix composites. Scripta Mater 25(1):33–38

    Article  CAS  Google Scholar 

  25. Hemanth J (2009) Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater Sci Eng A 507(1):110–113

    Article  CAS  Google Scholar 

  26. Hall JN, Jones JW, Sachdev AK (1994) Particle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 aluminum-SiC p composites. Mater Sci Eng A 183(1):69–80

    Article  CAS  Google Scholar 

  27. Mortensen A, Llorca J (2010) Metal matrix composites. Annu Rev Mater Res 40:243–270

    Article  CAS  Google Scholar 

  28. Rajan TP, Pillai RM, Pai BC (1998) Reinforcement coatings and interfaces in aluminum metal matrix composites. J Mater Sci 33(14):3491–3503. doi:10.1023/A:1004674822751

    Article  CAS  Google Scholar 

  29. Kang CG, Lee JH, Youn SW, Oh JK (2005) An estimation of three-dimensional finite element crystal geometry model for the strength prediction of particle-reinforced metal matrix composites. J Mater Process Technol 166(2):173–182

    Article  CAS  Google Scholar 

  30. Xu N, Zong BY (2008) Stress in particulate reinforcements and overall stress response on aluminum alloy matrix composites during straining by analytical and numerical modeling. Comput Mater Sci 43(4):1094–1100

    Article  CAS  Google Scholar 

  31. Engberg CJ, Zehms EH (1959) Thermal expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000°. C J Am Ceram Soc 42(6):300–305

    Article  Google Scholar 

  32. Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y (1998) High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. J Mater Sci 33(5):1217–1225. doi:10.1023/A:1004377626345

    Article  CAS  Google Scholar 

  33. Hashim J, Looney L, Hashmi MS (2001) The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol 119(1):324–328

    Article  CAS  Google Scholar 

  34. Sarina BA, Kai TA, Kvithyld A, Thorvald EN, Tangstad M (2012) Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration. Trans Nonferrous Met Soc China 22(8):1930–1938

    Article  CAS  Google Scholar 

  35. Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156. doi:10.1007/BF00544448

    Article  CAS  Google Scholar 

  36. Leon-Patino CA, Drew RA (2005) Role of metal interlayers in the infiltration of metal–ceramic composites. Curr Opin Solid State Mater Sci 9(4):211–218

    Article  CAS  Google Scholar 

  37. Tan M, Xin Q, Li Z, Zong BY (2001) Influence of SiC and Al2O3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites. J Mater Sci 36(8):2045–2053. doi:10.1023/A:1017591117670

    Article  CAS  Google Scholar 

  38. Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39(1):1–23

    Article  CAS  Google Scholar 

  39. Kang YC, Chan SL (2004) Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys 85(2):438–443

    Article  CAS  Google Scholar 

  40. Sun C, Song M, Wang Z, He Y (2011) Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites. J Mater Eng Perform 20(9):1606–1612

    Article  CAS  Google Scholar 

  41. Rahimian M, Ehsani N, Parvin N, reza Baharvandi H (2009) The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J Mater Process Technol 209(14):5387–5393

    Article  CAS  Google Scholar 

  42. Rahimian M, Parvin N, Ehsani N (2010) Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Mater Sci Eng A 527(4):1031–1038

    Article  CAS  Google Scholar 

  43. Rezayat M, Akbarzadeh A, Owhadi A (2012) Production of high strength Al– Al2O3 composite by accumulative roll bonding. Compos A 43(2):261–267

    Article  CAS  Google Scholar 

  44. Ahmadi A, Toroghinejad MR, Najafizadeh A (2014) Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process. Mater Des 53:13–19

    Article  CAS  Google Scholar 

  45. Kamrani S, Riedel R, Reihani SS, Kleebe HJ (2009) Effect of reinforcement volume fraction on the mechanical properties of Al-SiC nanocomposites produced by mechanical alloying and consolidation. J Compos Mater

  46. Kollo L, Bradbury CR, Veinthal R, Jäggi C, Carreno-Morelli E, Leparoux M (2011) Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation. Mater Sci Eng A 528(21):6606–6615

    Article  CAS  Google Scholar 

  47. Mula S, Padhi P, Panigrahi SC, Pabi SK, Ghosh S (2009) On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 nanocomposite. Mater Res Bull 44(5):1154–1160

    Article  CAS  Google Scholar 

  48. Khorshid MT, Jahromi SJ, Moshksar MM (2010) Mechanical properties of tri-modal Al matrix composites reinforced by nano-and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion. Mater Des 31(8):3880–3884

    Article  CAS  Google Scholar 

  49. Sharifi EM, Karimzadeh F, Enayati MH (2011) Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites. Mater Des 32(6):3263–3271

    Article  CAS  Google Scholar 

  50. Alizadeh M (2014) Strength prediction of the ARBed Al/Al2O3/B 4 C nano-composites using Orowan model. Mater Res Bull 59:290–294

    Article  CAS  Google Scholar 

  51. Fathy A, Sadoun A, Abdelhameed M (2014) Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites. Int J Adv Manuf Technol 73(5–8):1049–1056

    Article  Google Scholar 

  52. El-Kady O, Fathy A (2014) Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des 54:348–353

    Article  CAS  Google Scholar 

  53. Ferguson JB, Lopez HF, Rohatgi PK, Cho K, Kim CS (2014) Impact of volume fraction and size of reinforcement particles on the grain size in metal–matrix micro and nanocomposites. Metall Mater Trans A 45(9):4055–4061

    Article  CAS  Google Scholar 

  54. Kim CS, Sohn I, Nezafati M, Ferguson JB, Schultz BF, Bajestani-Gohari Z, Rohatgi PK, Cho K (2013) Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J Mater Sci 48(12):4191–4204. doi:10.1007/s10853-013-7232-x

    Article  CAS  Google Scholar 

  55. Ferguson JB, Schultz BF, Venugopalan D, Lopez HF, Rohatgi PK, Cho K, Kim CS (2014) On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: considerations of stress and energy. Met Mater Int 20(2):375

    Article  CAS  Google Scholar 

  56. Mondal DP, Das S, Suresh KS, Ramakrishnan N (2007) Compressive deformation behavior of coarse SiC particle reinforced composite: effect of age-hardening and SiC content. Mater Sci Eng A 460:550–560

    Article  CAS  Google Scholar 

  57. Wang Z, Song M, Sun C, He Y (2011) Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater Sci Eng A 528(3):1131–1137

    Article  CAS  Google Scholar 

  58. Wang Z, Song M, Sun C, Xiao D, He Y (2010) Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater Sci Eng A 527(24):6537–6542

    Article  CAS  Google Scholar 

  59. Hua Y, Gu L (2013) Prediction of the thermomechanical behavior of particle-reinforced metal matrix composites. Compos B 45(1):1464–1470

    Article  CAS  Google Scholar 

  60. Amirkhanlou S, Rezaei MR, Niroumand B, Toroghinejad MR (2011) High-strength and highly-uniform composites produced by compocasting and cold rolling processes. Mater Des 32(4):2085–2090

    Article  CAS  Google Scholar 

  61. Jamaati R, Amirkhanlou S, Toroghinejad MR, Niroumand B (2011) Effect of particle size on microstructure and mechanical properties of composites produced by ARB process. Mater Sci Eng A 528(4):2143–2148

    Article  CAS  Google Scholar 

  62. Onat A, Akbulut H, Yilmaz F (2007) Production and characterisation of silicon carbide particulate reinforced aluminium–copper alloy matrix composites by direct squeeze casting method. J Alloys Compd 436(1):375–382

    Article  CAS  Google Scholar 

  63. Slipenyuk A, Kuprin V, Milman Y, Goncharuk V, Eckert J (2006) Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater 54(1):157–166

    Article  CAS  Google Scholar 

  64. Doel TJ, Bowen P (1996) Tensile properties of particulate-reinforced metal matrix composites. Compos A 27(8):655–665

    Article  Google Scholar 

  65. Hong SJ, Kim HM, Huh D, Suryanarayana C, Chun BS (2003) Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater Sci Eng A 347(1):198–204

    Article  Google Scholar 

  66. Suh YS, Joshi SP, Ramesh KT (2009) An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites. Acta Mater 57(19):5848–5861

    Article  CAS  Google Scholar 

  67. Ogel B, Gurbuz R (2001) Microstructural characterization and tensile properties of hot pressed Al–SiC composites prepared from pure Al and Cu powders. Mater Sci Eng A 301(2):213–220

    Article  Google Scholar 

  68. Rajmohan T, Palanikumar K, Ranganathan S (2013) Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans Nonferrous Met Soc China 23(9):2509–2517

    Article  CAS  Google Scholar 

  69. Prasad DS, Shoba C, Ramanaiah N (2014) Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol 3(1):79–85

    Article  CAS  Google Scholar 

  70. Sajjadi SA, Ezatpour H, Beygi H (2011) Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng 528:8765–8771

    Article  CAS  Google Scholar 

  71. Hossein-Zadeh M, Mirzaee O, Saidi P (2014) Structural and mechanical characterization of Al-based composite reinforced with heat treated Al2O3 particles. Mater Des 54:245–250

    Article  CAS  Google Scholar 

  72. Sajjadi SA, Ezatpour HR, Parizi MT (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Des 34:106–111

    Article  CAS  Google Scholar 

  73. Kok M (2005) Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminum alloy composites. J Mater Process Technol 161(3):381–387

    Article  CAS  Google Scholar 

  74. Chou SN, Lu HH, Lii DF, Huang JL (2009) Processing and physical properties of Al2O3/aluminum alloy composites. Ceram Int 35(1):7–12

    Article  CAS  Google Scholar 

  75. Nagaral M, Bharath V, Auradi V (2013) Effect of Al2O3 particles on mechanical and wear properties of 6061Al alloy metal matrix composites. J Mater Sci Eng 2

  76. Hauert A, Rossoll A, Mortensen A (2010) Fracture of high volume fraction ceramic particle reinforced aluminium under multiaxial stress. Acta Mater 58(11):3895–3907

    Article  CAS  Google Scholar 

  77. Al-Dheylan K, Hafeez S (2006) Tensile failure micro mechanisms of 6061 Aluminum reinforced with submicron Al2O3 metal-matrix composites. AJSE Sec B 31(2C):89–98

    CAS  Google Scholar 

  78. Park BG, Crosky AG, Hellier AK (2001) Material characterization and mechanical properties of Al2O3–Al metal matrix composites. J Mater Sci 36(10):2417–2426. doi10.1023/A:1017921813503

    Article  CAS  Google Scholar 

  79. Bharath V, Nagaral M, Auradi V, Kori SA (2014) Preparation of 6061Al- Al2O3 MMC’s by stir casting and evaluation of mechanical and wear properties. Procedia Mater Sci 6:1658–1667

    Article  CAS  Google Scholar 

  80. Kim HH, Babu JS, Kang CG (2013) Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements. Mater Sci Eng A 573:92–99

    Article  CAS  Google Scholar 

  81. Ramnath BV, Elanchezhian C, Jaivignesh M, Rajesh S, Parswajinan C, Ghias AS (2014) Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Mater Des 58:332–338

    Article  CAS  Google Scholar 

  82. Alizadeh M, Paydar MH, Jazi FS (2013) Structural evaluation and mechanical properties of nanostructured Al/B 4 C composite fabricated by ARB process. Compos B 44(1):339–343

    Article  CAS  Google Scholar 

  83. Baradeswaran A, Perumal AE (2013) Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos B 54:146–152

    Article  CAS  Google Scholar 

  84. Rajan HM, Ramabalan S, Dinaharan I, Vijay SJ (2013) Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater Des 44:438–445

    Article  CAS  Google Scholar 

  85. Suresh S, Moorthi NS (2013) Process development in stir casting and investigation on microstructures and wear behavior of TiB2 on Al6061 MMC. Procedia Eng. 64:1183–1190

    Article  CAS  Google Scholar 

  86. Akbari MK, Baharvandi HR, Shirvanimoghaddam K (2015) Tensile and fracture behavior of nano/micro TiB 2 particle reinforced casting A356 aluminum alloy composites. Mater Des 66:150–161

    Article  CAS  Google Scholar 

  87. Mazahery A, Shabani MO (2012) Characterization of cast A356 alloy reinforced with nano SiC composites. Trans Nonferrous Met Soc China 22(2):275–280

    Article  CAS  Google Scholar 

  88. Mazahery A, Shabani MO (2012) Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: experimental and novel modeling evaluation. Powder Technol 217:558–565

    Article  CAS  Google Scholar 

  89. Knowles AJ, Jiang X, Galano M, Audebert F (2014) Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J Alloys Compd 615:S401–S405

    Article  CAS  Google Scholar 

  90. Poovazhagan L, Kalaichelvan K, Rajadurai A, Senthilvelan V (2013) Characterization of hybrid silicon carbide and boron carbide nanoparticles-reinforced aluminum alloy composites. Procedia Eng. 64:681–689

    Article  CAS  Google Scholar 

  91. Akbari MK, Mirzaee O, Baharvandi HR (2013) Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater Des 46:199–205

    Article  CAS  Google Scholar 

  92. Mazahery A, Abdizadeh H, Baharvandi HR (2009) Development of high-performance A356/nano- Al2O3 composites. Mater Sci Eng A 518(1):61–64

    Article  CAS  Google Scholar 

  93. Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y (2014) Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des 55:921–928

    Article  CAS  Google Scholar 

  94. Fine ME (1975) Precipitation hardening of aluminum alloys. Metall Trans A 6(4):625

    Article  Google Scholar 

  95. Song M, He YH, Wu ZG, Huang BY (2009) Multi-scale model for the ductility of multiple phase materials. Mech Mater 41(5):622–633

    Article  Google Scholar 

  96. Song M, Huang D (2007) Experimental and modeling of the coupled influences of variously sized particles on the tensile ductility of SiCp/Al metal matrix composites. Metall Mater Trans A 38(9):2127–2137

    Article  CAS  Google Scholar 

  97. Kallip K, Babu NK, Alogab KA, Kollo L, Maeder X, Arroyo Y, Leparoux M (2017) Microstructure and mechanical properties of near net shaped aluminum/alumina nanocomposites fabricated by powder metallurgy. J Alloys Compd 714:133–143

    Article  CAS  Google Scholar 

  98. Kumar GSP, Koppad PG, Keshavamurthy R, Alipour M (2017) Microstructure and mechanical behavior of in situ fabricated AA6061-TiC metal matrix composites. Arch Civ Mech Eng 17:535–544

    Article  Google Scholar 

  99. Li M, Ma K, Jiang L, Yang H, Lavernia EJ, Zhang L, Schoenung JM (2016) Synthesis and mechanical behavior of nanostructured Al 5083/n-TiB2 metal matrix composites. Mater Sci Eng A 656:241–248

    Article  CAS  Google Scholar 

  100. Jiang L, Yang H, Yee JK, Mo X, Topping T, Lavernia EJ, Schoenung JM (2016) Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles. Act Mater. 103:128–140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Army Research Laboratory under Cooperative Agreement No. W911NF-15-20005. The views, opinions, and conclusions made in this document are those of authors and should not be interpreted the official policies, either expressed or implied, of Army Research Laboratory or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CS., Cho, K., Manjili, M.H. et al. Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J Mater Sci 52, 13319–13349 (2017). https://doi.org/10.1007/s10853-017-1378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1378-x

Keywords

Navigation