Skip to main content
Log in

Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The incorporation of nanomaterials that are biocompatible with different types of biological compounds has allowed the development of a new generation of biosensors applied especially in the biomedical field. In particular, the integration of film-based nanomaterials employed in field-effect devices can be interesting to develop biosensors with enhanced properties. In this paper, we studied the fabrication of sensitive nanofilms combining ZnO nanocrystals and carbon nanotubes (CNTs), prepared by means of the layer-by-layer (LbL) technique, in a capacitive electrolyte-insulator-semiconductor (EIS) structure for detecting glucose and urea. The ZnO nanocrystals were incorporated in a polymeric matrix of poly(allylamine) hydrochloride (PAH), and arranged with multi-walled CNTs in a LbL PAH-ZnO/CNTs film architecture onto EIS chips. The electrochemical characterizations were performed by capacitance–voltage and constant capacitance measurements, while the morphology of the films was characterized by atomic force microscopy. The enzymes glucose oxidase and urease were immobilized on film’s surface for detection of glucose and urea, respectively. In order to obtain glucose and urea biosensors with optimized amount of sensitive films, we investigated the ideal number of bilayers for each detection system. The glucose biosensor showed better sensitivity and output signal for an LbL PAH-ZnO/CNTs nanofilm with 10 bilayers. On the other hand, the urea biosensor presented enhanced properties even for the first bilayer, exhibiting high sensitivity and output signal. The presence of the LbL PAH-ZnO/CNTs films led to biosensors with better sensitivity and enhanced response signal, demonstrating that the adequate use of nanostructured films is feasible for proof-of-concept biosensors with improved properties that may be employed for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Willner I, Willner B (2010) Biomolecule-based nanomaterials and nanostructures. Nano Lett 10:3805–3815

    Article  Google Scholar 

  2. Oliveira ON Jr., Iost RM, Siqueira JR Jr., Crespilho FN, Caseli L (2014) Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6:14745–14766

    Article  Google Scholar 

  3. Katsuhiko A, Minami K, Shrestha LK (2016) Nanoarchitectonics for carbon-material-based sensors. Analyst 141:2629–2638

    Article  Google Scholar 

  4. Tiwari JN, Vij V, Kemp KC, Kim KS (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10:46–80

    Article  Google Scholar 

  5. Iost RM, Crespilho FN (2012) Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics. Biosens Bioelectron 31:1–10

    Article  Google Scholar 

  6. Willander M, Khun K, Ibupoto ZH (2014) ZnO based potentiometric and amperometric nanosensors. J Nanosci Nanotechnol 14:6497–6508

    Article  Google Scholar 

  7. Chauhan I, Aggrawal S, Chandravati MP (2015) Metal oxide nanostructures incorporated/immobilized paper matrices and their applications: a review. RSC Adv 5:83036–83055

    Article  Google Scholar 

  8. Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem 204:250–272

    Article  Google Scholar 

  9. Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451

    Article  Google Scholar 

  10. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecule. Adv Mater 19:3214–3228

    Article  Google Scholar 

  11. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    Article  Google Scholar 

  12. Qin X, Xu A, Liu L, Sui Y, Li Y, Tan Y, Chen C, Xie Q (2016) Design of highly selective gas sensors via physicochemical modification of oxide nanowires: overview. Sensors 16:1531

    Article  Google Scholar 

  13. Kang Z, Gu Y, Yan X, Bai Z, Liu Y, Liu S, Zhang X, Zhang Z, Zhang X, Zhang Y (2015) Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron 64:499–504

    Article  Google Scholar 

  14. Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Mat 3:804–816

    Article  Google Scholar 

  15. Poghossian A, Schöning MJ (2014) Label-free sensing of biomolecules with field-effect devices for clinical applications. Electroanalysis 26:1197–1213

    Article  Google Scholar 

  16. Siqueira JR Jr., Caseli L, Crespilho FN, Zucolotto V, Oliveira ON Jr. (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25:1254–1263

    Article  Google Scholar 

  17. Poghossian A, Ingebrandt S, Offenhäusser A, Schöning MJ (2009) Field-effect devices for detecting cellular signals. Semin Cell Dev Biol 20:41–48

    Article  Google Scholar 

  18. Schöning MJ, Poghossian A (2006) Bio FEDs (field-effect devices): state-of-the-art and new directions. Electroanal 18:1893–1900

    Article  Google Scholar 

  19. Schöning MJ (2005) “Playing around” with field-effect sensors on the basis of EIS structures, LAPS and ISFETs. Sensors 5:126–138

    Article  Google Scholar 

  20. Schöning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127:1137–1151

    Article  Google Scholar 

  21. Siqueira JR Jr., Abouzar MH, Poghossian A, Zucolotto V, Oliveira ON Jr., Schöning MJ (2009) Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosens Bioelectron 25:497–501

    Article  Google Scholar 

  22. Siqueira JR Jr., Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON Jr., Schöning MJ (2009) Layer-by-layer assembly of carbon nanotubes incorporated in light-addressable potentiometric sensors. J Phys Chem C 113:14765–14770

    Article  Google Scholar 

  23. Siqueira JR Jr., Bäcker M, Poghossian A, Zucolotto V, Oliveira ON Jr., Schöning MJ (2010) Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices. Phys Status Solidi A 207:781–786

    Article  Google Scholar 

  24. Abouzar MH, Poghossian A, Siqueira JR Jr., Oliveira ON Jr, Moritz W, Schöning MJ (2010) Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: new strategy for enhanced field-effect biosensing. Phys Status Solidi A 207:884–890

    Article  Google Scholar 

  25. Siqueira JR Jr., Molinnus D, Beging S, Schöning MJ (2014) Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection. Anal Chem 86:5370–5375

    Article  Google Scholar 

  26. Abouzar MH, Poghossian A, Pedraza AM, Gandhi D, Ingebrandt S, Moritz W, Schöning MJ (2011) An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing. Biosens Bioelectron 26:3023–3028

    Article  Google Scholar 

  27. Bronder TS, Poghossian A, Scheja S, Wu C, Keusgen M, Mewes D, Schöning MJ (2015) DNA immobilization and hybridization detection by the intrinsic molecular charge using capacitive field-effect sensors modified with a charged weak polyelectrolyte layer. ACS Appl Mater Interfaces 7:20068–20075

    Article  Google Scholar 

  28. Wu C, Poghossian A, Bronder TS, Schöning MJ (2016) Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor. Sens Actuators B 229:506–512

    Article  Google Scholar 

  29. Dantas NO, Damigo L, Qu F, Cunha JFR, Silva RS, Miranda KL, Vilela EC, Sartoratto PPC, Morais PC (2008) Raman investigation of ZnO and Zn1−x Mn x O nanocrystals synthesized by precipitation method. J Non-Cryst Solids 354:4827–4829

    Article  Google Scholar 

  30. Dantas NO, Damigo L, Qu F, Silva RS, Sartoratto PPC, Miranda KL, Vilela EC, Pelegrini F, Morais PC (2008) Structural and magnetic properties of ZnO and Zn1−x Mn x O nanocrystals. J Non-Cryst Solids 354:4727–4729

    Article  Google Scholar 

  31. Sousa CJA, Pereira MC, Almeida RJ, Loyola AM, Silva ACA, Dantas NO (2014) Synthesis and characterization of zinc oxide nanocrystals and histologic evaluation of their biocompatibility by means of intraosseous implants. Int Endod J 47:416–424

    Article  Google Scholar 

  32. Schöning MJ, Brinkmann D, Rolka D, Demuth C, Poghossian A (2005) CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure. Sens Actuators B 111–112:423–429

    Article  Google Scholar 

  33. Poghossian A, Lüth H, Schultze JW, Schöning MJ (2001) (Bio-)chemical and physical microsensor array using an identical transducer principle. Electrochim Acta 47:243–249

    Article  Google Scholar 

  34. Kao CH, Chen H, Lee ML, Liu CC, Ueng H-Y, Chu YC, Chen YJ, Chang KM (2014) Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures. J Appl Phys 115:184701

    Article  Google Scholar 

  35. Luo X-L, Xu J-J, Zhao W, Chen H-Y (2004) A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens Bioelectron 19:1295–1300

    Article  Google Scholar 

  36. Luo X-L, Xu J-J, Zhao W, Chen H-Y (2004) Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sens Actuators B 97:249–255

    Article  Google Scholar 

  37. Soldatkin AP, Montoriol J, Sant W, Martelet C, Jaffrezic-Renault N (2003) A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs. Biosens Bioelectron 19:131–135

    Article  Google Scholar 

  38. Wu M-H, Lee C-D, Pan T-M (2009) Sensing films electrolyte-insulator-semiconductor pH-sensor for the detection of urea. Anal Chim Acta 651:36–41

    Article  Google Scholar 

  39. Wu M-H, Cheng C-H, Lai A-S, Pan T-M (2009) Structural properties and sensing performance of high-k Sm2O3 membrane-based electrolyte–insulator–semiconductor for pH and urea detection. Sens Actuators B 138:221–227

    Article  Google Scholar 

  40. Pan T-M, Lin J-C, Wu M-H, Lai C-S (2009) Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte–insulator–semiconductor for pH detection and urea biosensing. Biosens Bioelectron 24:2864–2870

    Article  Google Scholar 

  41. Pan T-M, Lin J-C (2009) A TiO2/Er2O3 stacked electrolyte/insulator/semiconductor film pH-sensor for the detection of urea. Sens Actuators B 138:474–479

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian Foundations CNPq (Grant 477668/2013-5), FAPEMIG (Grants APQ-01763-13 and APQ-00756-16), and Rede Mineira de Química (FAPEMIG-CEX-RED-00010-14) for the financial support. Furthermore, the authors gratefully thank Heiko Iken for technical support with the EIS chip fabrication at Forschungszentrum Jülich, and the facilities with the AFM measurements at Institute of Physics, Federal University of Uberlândia (Grant “Pró-Equipamentos”—CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Siqueira Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, P.V., Gomes, V.F., Silva, A.C.A. et al. Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices. J Mater Sci 52, 12314–12325 (2017). https://doi.org/10.1007/s10853-017-1369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1369-y

Keywords

Navigation