Skip to main content
Log in

From MOF membrane to 3D electrode: a new approach toward an electrochemical non-enzymatic glucose biosensor

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) nickel oxide (NiO) catalytic electrode was fabricated by annealing Ni2(L-asp)2bipy MOF membrane and was subsequently applied for electrochemical glucose sensor. This 3D self-supported MOF membrane precursor provided uniform and porous architecture, and it was used for fabricating 3D NiO electrode in the first time. The SEM and XRD data showed that the NiO was evenly distributed on Ni mesh and complete transformation from Ni2(L-asp)2bipy to NiO. This catalytic electrode, using a chronoamperometric approach, demonstrated linear range up to 400 μM with high sensitivity of 478.9 μA mM−1 cm−2 and low limit of detection of 4.34 μM. Uric acid, urea and ascorbic acid showed negligible interferences to the detection of glucose. The excellent performance of this electrode was attributed to the uniformly distributed NiO on the Ni substrate, direct electron transformation from Ni substrate to electrochemical active NiO and the porosity of such electrode design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57

    Article  Google Scholar 

  2. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301

    Google Scholar 

  3. Niu XH, Li X, Pan JM, He YF, Qiu FX, Yan YS (2016) Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. Rsc Adv 6:84893–84905

    Article  Google Scholar 

  4. Ensafi AA, Ahmadi N, Rezaei B (2017) Nickel nanoparticles supported on porous silicon flour, application as a non-enzymatic electrochemical glucose sensor. Sens Actuators B Chem 239:807–815

    Article  Google Scholar 

  5. Garcia-Garcia FJ, Salazar P, Yubero F, Gonzalez-Elipe AR (2016) Non-enzymatic Glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim Acta 201:38–44

    Article  Google Scholar 

  6. Khedekar VV, Bhanage BM (2016) Simple electrochemical synthesis of cuprous oxide nanoparticles and their application as a non-enzymatic glucose sensor. J Electrochem Soc 163:B248–B251

    Article  Google Scholar 

  7. Mahmoudian MR, Basirun WJ, Woi PM, Sookhakian M, Yousefi R, Ghadimi H, Alias Y (2016) Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)(2) as non-enzymatic electrochemical sensors for glucose detection. Mater Sci Eng C Mater Biol Appl 59:500–508

    Article  Google Scholar 

  8. Wang D, Cai D, Huang H, Liu B, Wang L, Liu Y, Li H, Wang Y, Li Q, Wang T (2015) Non-enzymatic electrochemical glucose sensor based on NiMoO4 nanorods. Nanotechnology 26:145501

  9. Deng Z, Long H, Wei Q, Yu Z, Zhou B, Wang Y, Zhang L, Li S, Ma L, Xie Y, Min J (2017) High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode. Sens Actuators B Chem 242:825–834

    Article  Google Scholar 

  10. Wang L, Lu X, Wen C, Xie Y, Miao L, Chen S, Li H, Li P, Song Y (2015) One-step synthesis of Pt–NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing. J Mater Chem A 3:608–616

    Article  Google Scholar 

  11. Wang L, Zhang Y, Yu J, He J, Yang H, Ye Y, Song Y (2017) A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing. Sens Actuators B Chem 239:172–179

    Article  Google Scholar 

  12. Song Y, Liu H, Tan H, Xu F, Jia J, Zhang L, Li Z, Wang L (2014) pH-switchable electrochemical sensing platform based on chitosan-reduced graphene oxide/concanavalin a layer for assay of glucose and urea. Anal Chem 86:1980–1987

    Article  Google Scholar 

  13. Song Y, Lu X, Li Y, Guo Q, Chen S, Mao L, Hou H, Wang L (2016) Nitrogen-doped carbon nanotubes supported by macroporous carbon as an efficient enzymatic biosensing platform for glucose. Anal Chem 88:1371–1377

    Article  Google Scholar 

  14. Wang L, Zhang Q, Chen S, Xu F, Chen S, Jia J, Tan H, Hou H, Song Y (2014) Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal Chem 86:1414–1421

    Article  Google Scholar 

  15. Adatoz E, Avci AK, Keskin S (2015) Opportunities and challenges of MOF-based membranes in gas separations. Sep Purif Technol 152:207–237

    Article  Google Scholar 

  16. Zhang Y, Feng X, Yuan S, Zhou J, Wang B (2016) Challenges and recent advances in MOF-polymer composite membranes for gas separation. Inorg Chem Front 3:896–909

    Article  Google Scholar 

  17. Hou C, Xu Q, Yin L, Hu X (2012) Metal-organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. Analyst 137:5803–5808

    Article  Google Scholar 

  18. Zhou E, Zhang Y, Li Y, He X (2014) Cu(II)-based MOF immobilized on multiwalled carbon nanotubes: synthesis and application for nonenzymatic detection of hydrogen peroxide with high sensitivity. Electroanalysis 26:2526–2533

    Article  Google Scholar 

  19. Wu D, Xu Z, Zhang T, Shao Y, Xi P, Li H, Xu C (2016) Cu2O/CuO@rGO heterostructure derived from metal-organic-frameworks as an advanced electrocatalyst for non-enzymatic electrochemical H2O2 sensor. RSC Adv 6:103116–103123

    Article  Google Scholar 

  20. Wang L, Yang H, He J, Zhang Y, Yu J, Song Y (2016) Cu-hemin metal-organic-frameworks/chitosan-reduced graphene oxide nanocomposites with peroxidase-like bioactivity for electrochemical sensing. Electrochim Acta 213:691–697

    Article  Google Scholar 

  21. Shi L, Zhu X, Liu T, Zhao H, Lan M (2016) Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing. Sens Actuators B Chem 227:583–590

    Article  Google Scholar 

  22. Kang Z, Xue M, Fan L, Huang L, Guo L, Wei G, Chen B, Qiu S (2014) Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane. Energy Environ Sci 7:4053–4060

    Article  Google Scholar 

  23. Wang S, Wang C, Wei G, Xiao H, An N, Zhou Y, An C, Zhang J (2016) Non-enzymatic glucose sensor based on facial hydrothermal synthesized NiO nanosheets loaded on glassy carbon electrode. Colloids Surf A 509:252–258

    Article  Google Scholar 

  24. Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D (2006) In situ studies of the oxidation of nickel electrodes in alkaline solution. J Electroanal Chem 587:172–181

    Article  Google Scholar 

  25. Xu K, Huang X, Liu Q, Zou R, Li W, Liu X, Li S, Yang J, Hu J (2014) Understanding the effect of polypyrrole and poly(3,4-ethylenedioxythiophene) on enhancing the supercapacitor performance of NiCo2O4 electrodes. J Mater Chem A 2:16731–16739

    Article  Google Scholar 

  26. Zhao Y, Wang Q, Bian T, Yu H, Fan H, Zhou C, Wu LZ, Tung CH, O’Hare D, Zhang T (2015) Ni3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors. Nanoscale 7:7168–7173

    Article  Google Scholar 

  27. Gao S, Liao F, Ma S, Zhu L, Shao M (2015) Network-like mesoporous NiCo2O4 grown on carbon cloth for high-performance pseudocapacitors. J Mater Chem A 3:16520–16527

    Article  Google Scholar 

  28. Parveen N, Cho MH (2016) Self-assembled 3D flower-like nickel hydroxide nanostructures and their supercapacitor applications. Sci Rep 6:27318

    Article  Google Scholar 

  29. Zeng G, Li W, Ci S, Jia J, Wen Z (2016) Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell. Sci Rep 6:36454

    Article  Google Scholar 

  30. Yang J, Yu J-H, Rudi Strickler J, Chang W-J, Gunasekaran S (2013) Nickel nanoparticle–chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens Bioelectron 47:530–538

    Article  Google Scholar 

  31. Shamsipur M, Najafi M, Hosseini M-RM (2010) Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 77:120–124

    Article  Google Scholar 

  32. Xu J, Xu N, Zhang X, Xu P, Gao B, Peng X, Mooni S, Li Y, Fu J, Huo K (2017) Phase separation induced rhizobia-like Ni nanoparticles and TiO2 nanowires composite arrays for enzyme-free glucose sensor. Sens Actuators B Chem 244:38–46

    Article  Google Scholar 

  33. Ghanbari K, Babaei Z (2016) Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal Biochem 498:37–46

    Article  Google Scholar 

  34. Long M, Tan L, Liu H, He Z, Tang A (2014) Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. Biosens Bioelectron 59:243–250

    Article  Google Scholar 

  35. Li Y, Zhong Y, Zhang Y, Weng W, Li S (2015) Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sens Actuators B Chem 206:735–743

    Article  Google Scholar 

  36. Balamurugan J, Thanh TD, Karthikeyan G, Kim NH, Lee JH (2017) A novel hierarchical 3D N-Co-CNT@NG nanocomposite electrode for non enzymatic glucose and hydrogen peroxide sensing applications. Biosens Bioelectron 89:970–977

    Article  Google Scholar 

  37. Nontawong N, Amatatongchai M, Jarujamrus P, Tamuang S, Chairam S (2017) Non-enzymatic glucose sensors for sensitive amperometric detection based on simple method of nickel nanoparticles decorated on magnetite carbon nanotubes modified glassy carbon electrode. Int J Electrochem Sci 12:1362–1376

    Article  Google Scholar 

  38. Krebs HA (1950) Chemical composition of blood plasma and serum. Annu Rev Biochem 19:409–430

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial supports provided by National Natural Science Foundation of China (21501198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zixi Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Li, J., Wang, S. et al. From MOF membrane to 3D electrode: a new approach toward an electrochemical non-enzymatic glucose biosensor. J Mater Sci 52, 12089–12097 (2017). https://doi.org/10.1007/s10853-017-1349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1349-2

Keywords

Navigation