Skip to main content
Log in

Composite polytetrafluoroethylene–poly(4-vinylpyridine) membranes for protection against phosphonate-based cholinesterase inhibitors

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An expanded polytetrafluoroethylene (ePTFE) membrane was modified with an interpenetrating network of cross-linked poly(4-vinylpyridine) (PVP), a pH-responsive, nucleophilic polymer. Stirred reactor testing performed in buffered acidic conditions confirmed that PVP is a suitable catalyst to break down diisopropyl fluorophosphate (DFP), a commonly used nerve agent surrogate. The presence of the PVP interpenetrating network on the ePTFE membrane was established using Raman spectroscopy and thermogravimetric analysis. Goniometric measurements of average contact angles greater than 120° performed post-modification confirmed that the ePTFE membrane retained its hydrophobic properties. Utility of the ePTFE/PVP membrane was assessed by subjecting samples to DFP vapor permeation using the vial-in-vial method. The pH response of modified membranes having PVP loadings high enough to enable penetration of water was tested using cyclic voltammetry and electrochemical impedance spectroscopy. Changes in peak current and electron transfer resistance, R ET, corresponding with pH revealed that the ePTFE/PVP membranes are potential candidates for self-decontamination and electrochemical sensing. Finally, nanoscale characterization of the responsive membranes using atomic force microscopy was performed via the Derjaguin approximation, which treats the surface-confined polymer as a brush. Analysis established that the average brush length increased from 60 to 70 nm in response to a pH decrease from 7 to 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Partington JR (1999) A history of Greek fire and gunpowder. Johns Hopkins University Press, Baltimore

    Google Scholar 

  2. Cornwell J (2003) Hitler’s Scientists. Penguin Group (USA) Inc., New York

    Google Scholar 

  3. Cirincione J, Wolfsthal JB, Rajkumar M (2005) Deadly Arsenals. Carnegie Endowment for Int’l Peace, Washington

    Google Scholar 

  4. Rosman Y, Eisenkraft A, Milk N et al (2014) Lessons learned from the Syrian sarin attack: evaluation of a clinical syndrome through social media. Ann Intern Med 160(9):644–648. doi:10.7326/M13-2799

    Article  Google Scholar 

  5. Okumura T, Hisaoka T, Yamada A et al (2005) The Tokyo subway sarin attack–lessons learned. Toxicol Appl Pharmacol 207(2):471–476. doi:10.1016/j.taap.2005.02.032

    Article  Google Scholar 

  6. Ellison DH (2008) Handbook of chemical and biological warfare agents. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  7. Arca VJ, Marshall SM, Lake WA, Fedele PD (1999) Chemical protective clothing for law enforcement patrol officers and emergency medical services when responding to terrorism with chemical weapons. ECBC-TR-131, Defense Technical Information Center, Fort Belvoir, VA

  8. National Fire Prevention Association (2012) NFPA #1994 standard on protective ensembles for first responders to CBRN terrorism incidents

  9. Tam TK, Ornatska M, Pita M, Minko M, Katz E (2008) Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications. J Phys Chem C 112(22):8438–8445. doi:10.1021/jp801086w

    Article  Google Scholar 

  10. Tam TK, Zhou J, Pita M, Ornatska M, Minko M, Katz E (2008) Biochemically controlled bioelectrocatalytic interface. J Am Chem Soc 130(33):10888–10889. doi:10.1021/ja8043882

    Article  Google Scholar 

  11. Bromberg L, Su X, Martis V, Zhang Y, Hatton TA (2016) Self-decontaminating fibrous materials reactive toward chemical threats. Appl Mater Interfaces 8(27):17555–17564. doi:10.1021/acsami.6b05241

    Article  Google Scholar 

  12. Rajagopalan S, Koper O, Decker S, Klabunde KJ (2002) Nanocrystalline metal oxides as destructive adsorbents for organo-phosphorus compounds at ambient temperatures. Chem Eur J 8(11):2602–2607. doi:10.1002/1521-3765(20020603)8:11<2602:AID-CHEM2602>3.0.CO;2-3

    Article  Google Scholar 

  13. Salter WB, Owens JR, Hayn R, McDonald R, Shannon E (2009) N-chloramide modified Nomex as a regenerable self-decontaminating material for protection against chemical warfare agents. J Mater Sci 44(8):2069–2078. doi:10.1007/s10853-008-3114-z

    Article  Google Scholar 

  14. Singh A, Lee Y, Dressick WJ (2004) Self-cleaning fabrics for decontamination of organophosphorous pesticides and related chemical agents. Adv Mater 16(23–24):2112–2115. doi:10.1002/adma.200400660

    Article  Google Scholar 

  15. Wagner G, Yang Y (2002) Rapid nucleophilic/oxidative decontamination of chemical warfare agents. Ind Eng Chem Res 41(8):1925–1928. doi:10.1021/ie010732f

    Article  Google Scholar 

  16. Strack G, Katz E (2012) Information security systems based on biomolecular information processing. Int J Unconv Comput 8(5):419–432. doi:10.3389/fncom.2016.00003

    Google Scholar 

  17. Creasy W, Fry R, McGarvey D, Hendrickson D, Durst HD (2010) Methods for chemical warfare agent reaction studies on reactive films using headspace GC/MS and high resolution magic angle spinning (HRMAS) NMR. Main Gr Chem 9(3–4):245–256. doi:10.3233/MGC-2010-0025

    Google Scholar 

  18. Salter WB, Lovingood DD, Creasy W, Owens JR (2016) Analysis of vaporous contaminants including low-volatility analytes permeating textiles at room temperature using headspace solid-phase microextraction GC–MS. Surf Interface Anal 48(1):47–50. doi:10.1002/sia.5887

    Article  Google Scholar 

  19. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1):1–152. doi:10.1016/j.surfrep.2005.08.003

    Article  Google Scholar 

  20. Schmälzlin E, Moralejo B, Rutowska M et al (2014) Raman imaging with a fiber-coupled multichannel spectrograph. Sensors 14(11):21969–21980. doi:10.3390/s141121968

    Article  Google Scholar 

  21. Nur H, Cornelius VJ, Benee LS, Mitchell JC, Day IJ, Snowden MJ (2009) Semi-quantitative analysis of the monomer composition in co-polymer microgels using solid state Raman and NMR spectroscopy. Analyst 134(7):1366–1372. doi:10.1039/b816792c

    Article  Google Scholar 

  22. Bhushan B, Jung Y-C (1984) Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Phil Trans R Soc A 367:1631–1672. doi:10.1098/rsta.2009.0014

    Article  Google Scholar 

  23. Miwa M, Nakajima A, Fujishima A, Hashinoto K, Watanabe T (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16(13):5754–5760. doi:10.1021/la991660o

    Article  Google Scholar 

  24. Verplanck N, Coffinier Y, Thomy V, Boukherroud R (2007) Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res Lett 2:577. doi:10.1007/s11671-007-9102-4

    Article  Google Scholar 

  25. Volkov D, Strack G, Halamek J, Katz E, Sokolov I (2010) Atomic force microscopy study of immunosensor surface to increase sensitivity and scale down size of ELISA-type sensors. Nanotechnology 21(14):145503. doi:10.1088/0957-4484/21/14/145503

    Article  Google Scholar 

  26. Israelachvili JN (1992) Intermolecular and Surface Forces. Academic Press, Cambridge, 288–307

    Google Scholar 

  27. Buckles LC (1947) Hydrolysis Rate of GD. TCIR 373, Aberdeen Proving Ground, MD, ascension number ADB966291

  28. Rádl Z, Opluštil F (1992) Kinetics and mechanisms of hydrolysis of fluorophosphates in aqueous solution. In: Fourth International Symposium on Protection against Chemical Warfare Agents, Stockholm, Sweden, 40067(4) of FOA rapport: A. 4. pp 155–156

  29. Reeves AM (1947) Hydrolysis of Agents GB and GE. TCIR 373, Aberdeen Proving Ground, MD, ascension number ADB966291

Download references

Acknowledgements

This research was supported in part by an appointment to the Postgraduate Research Participation Program at the Air Force Civil Engineer Center administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and the Air Force Civil Engineer Center, Readiness Directorate, Airbase Technologies Division (AFCEC/CXAE). The authors also thank Jeffery Eichler and Rosalyn Limbacher for their assistance with sample analysis and preparation, and Stedfast Inc. for providing ePTFE membranes.

Funding

The authors thank the Defense Threat Reduction Agency and the Army Natick Soldier RD&E Center for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guinevere Strack or Jeffery Owens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strack, G., McDonald, R., Salter, W.B. et al. Composite polytetrafluoroethylene–poly(4-vinylpyridine) membranes for protection against phosphonate-based cholinesterase inhibitors. J Mater Sci 52, 12902–12912 (2017). https://doi.org/10.1007/s10853-017-1343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1343-8

Keywords

Navigation