Skip to main content
Log in

Experimental investigation and thermodynamic assessment of Al–Ca–Ni ternary system

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Al–Ca–Ni ternary system has been experimentally investigated and thermodynamically assessed to contribute to the development of a novel Al-base amorphous alloy. A new approach in alloy preparation was used due to the special properties of calcium. With selected equilibrated alloys, the isothermal sections of the Al–Ca–Ni system at 873 and 673 K were obtained by means of scanning electron microscopy, electron probe micro-analysis (EPMA) and powder X-ray diffractometry (XRD). Phase transformation temperatures were measured by differential scanning calorimetry (DSC) analysis. The liquidus projection of this ternary system was determined by identification of primary crystallization phases in as-cast samples and from the liquidus temperatures obtained from DSC analysis. A new ternary compound Al78Ca9Ni13 (referred to as τ 3 here after) has been confirmed to exist in both the 873 and 673 K isothermal sections on the basis of EPMA and XRD analysis. All sample compositions are Al-rich: A1–A4 samples > 72.64 at.% Al, B1–B10, C1–C11 > 45 at.% Al, with only C12 at 36.8 at.% Al. Based on the available data of the binary systems Al–Ni, Al–Ca, Ca–Ni and the ternary system Al–Ca–Ni from the literature and present work, thermodynamic modelling of the Al–Ca–Ni ternary system was performed using the calculation of phase diagram method coupled with first-principle calculations. A set of consistent thermodynamic parameters for the Al–Ca–Ni ternary system was obtained with good agreement with the experimental results in the Al-rich region. The calculated data in the Al-poor region are a very plausible prediction, but not validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Inoue A, Shen B, Koshiba H, Kato H, Yavari AR (2003) Cobalt-based bulk glassy alloy with ultra-high strength and soft magnetic properties. Nat Mater 2:661–663

    Article  Google Scholar 

  2. Schroers J, Johnson WL (2004) Ductile bulk metallic glass. Phys Rev Lett 93:255506

    Article  Google Scholar 

  3. Zhang B, Pan MX, Zhao DQ, Wang WH (2004) “Soft” bulk metallic glasses based on cerium. Appl Phys Lett 85:61–63

    Article  Google Scholar 

  4. Liu YH, Wang G, Wang RJ, Zhao DQ, Pan MX, Wang WH (2007) Super plastic bulk metallic glasses at room temperature. Science 315:1385–1388

    Article  Google Scholar 

  5. Lindsay Greer A (2015) New horizons for glass formation and stability. Nat Mater 14:542–546

    Article  Google Scholar 

  6. Guo S, Liu Y (2012) Estimation of critical cooling rates for formation of amorphous alloys from critical sizes. J Noncryst Solids 358:2753–2758

    Article  Google Scholar 

  7. Ge L, Hui X, Wang ER, Chen GL, Arroyave R, Liu ZK (2008) Prediction of the glass forming ability in Cu–Zr binary and Cu–Zr–Ti ternary alloys. Intermetallics 16:27–33

    Article  Google Scholar 

  8. Wang JQ, Liu YH, Imhoff S, Chen N, Louzguine-Luzgin DV, Takeuchi A, Chen MW, Kato H, Perepezko JH, Inoue A (2012) Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics 29:35–40

    Article  Google Scholar 

  9. Ayers JD, Jones HN, Vold CL (1993) Stabilization of aluminum and magnesium base metallic glasses by the addition of calcium. Scr Metall Mater 29:205–209

    Article  Google Scholar 

  10. Han FF, Inoue A, Han Y, Kong FL, Zhu SL, Shalaan E, Al-Marzouki F (2016) High formability of glass plus fcc-Al phases in rapidly solidified Al-based multicomponent alloy. J Mater Sci 52:1246–1254. doi:10.1007/s10853-016-0394-6

    Article  Google Scholar 

  11. Jiang YR, Li X, Jiang Y, Huang SH, Shi X, Mao C, Zhang LG, Liu LB, Zheng F (2017) Experimental investigation of phase relations in Al–Co–Y ternary system. Calphad 56:1–9

    Article  Google Scholar 

  12. Li X, Liu LB, Jiang Y, Huang GX, Wang X, Jiang YR, Liang JS, Zhang LG, Shi X (2016) Thermodynamic evaluation of the phase equilibria and glass-forming ability of the Al–Co–Gd system. Calphad 52:57–65

    Article  Google Scholar 

  13. Bao XH, Liu LB, Jiang YR, Jiang Y, Mao C, Li X, Zhang LG (2016) Thermodynamic assessment of the Al–Ba system. J Phase Equilib Diffus 37:345–349

    Article  Google Scholar 

  14. Huang SX, Zhang XD, Jiang Y, Jiang YR, Mao C, Wu D, Liu LB, Zhang LG (2017) Experimental investigation of Ti–Nb–Co at 1000°C. Mater Des 115:170–178

    Article  Google Scholar 

  15. Bo H, Liu LB, Hu JL, Jin ZP (2015) Experimental investigation and thermodynamic modeling of the Al–Dy–Zr system. J Mater Sci 50:6427–6436. doi:10.1007/s10853-015-9197-4

    Article  Google Scholar 

  16. Bai WM, Jiang Y, Guo ZY, Zeng LJ, Tan MY, Meggs C, Zhang LG, Liu LB, Jin ZP (2017) Experimental and thermodynamic investigation of Al–Cu–Nd ternary system. Mater Chem Phys 195:94–104

    Article  Google Scholar 

  17. Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams with special reference to refractory metals. Academic Press, New York

    Google Scholar 

  18. Alexander WO, Vaughan NB (1937) Investigation of phase equilibria in Al–Ni system. J Inst Met 61:247–260

    Google Scholar 

  19. Nash P, Singleton MF, Murray JL (1991) In: Nash P (ed) Phase diagrams of binary nickel alloys. ASM International, Materials Park, pp 3–11

    Google Scholar 

  20. Okamoto H (1993) Phase diagram updates: section III: Al–Ni. J Phase Equilib 14:257–259

    Article  Google Scholar 

  21. Kaufman L, Nesor H (1978) Coupled phase diagrams and thermochemical data for transition metal binary systems—V. Calphad 2:325–348

    Article  Google Scholar 

  22. Du Y, Clavaguera N (1996) Thermodynamic assessment of the A1–Ni system. J Alloys Compd 237:20–32

    Article  Google Scholar 

  23. Ansara I, Dupin N, Lukas HL, Sundman B (1997) Thermodynamic assessment of the A1–Ni system. J Alloys Compd 247:20–30

    Article  Google Scholar 

  24. Andersson JO, Guillermet AF, Hillert M, Jansson B, Sundman B (1986) A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall 34:437–445

    Article  Google Scholar 

  25. Huang W, Chang YA (1998) A thermodynamic analysis of the Ni–Al system. Intermetallics 6:487–498

    Article  Google Scholar 

  26. Dupin N, Ansara I, Sundman B (2001) Thermodynamic re-assessment of the ternary system Al–Cr–Ni. Calphad 25:279–298

    Article  Google Scholar 

  27. Zhang F, Chang YA, Du Y, Chen SL, Oates WA (2003) Application of the cluster-site approximation (CSA) model to the Fcc phase in the Ni–Al system. Acta Mater 51:207–216

    Article  Google Scholar 

  28. Chen HL, Doernberg E, Svoboda P, Schmid-Fetzer R (2011) Thermodynamics of the Al3Ni phase and revision of the Al–Ni system. Thermochim Acta 512:189–195

    Article  Google Scholar 

  29. Wang Y, Cacciamani G (2016) Thermodynamic modeling of the Al–Cr–Ni system over the entire composition and temperature range. J Alloys Compd 688:422–435

    Article  Google Scholar 

  30. Hansen M, Anderko K (1958) Constitution of binary alloys, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  31. Huang B, Corbett JD (1998) Two new binary calcium–aluminum compounds: Ca13Al14, with a novel two-dimensional aluminum network, and Ca8Al3, an Fe3Al-type analogue1. Inorg Chem 37:5827–5833

    Article  Google Scholar 

  32. Kevorkov D, Schmid-Fetzer R (2001) The Al–Ca system, Part 1: experimental investigation of phase equilibria and crystal structures. Z. Metall 92:946–952

    Google Scholar 

  33. Ozturk K, Chen LQ, Liu ZK (2002) Thermodynamic assessment of the Al–Ca binary system using random solution and associate models. J Alloys Compd 340:199–206

    Article  Google Scholar 

  34. Wolverton C, Yan XY, Vijayaraghavan R, Ozolins V (2002) Incorporating first-principles energetics in computational thermodynamics approaches. Acta Mater 50:2187–2197

    Article  Google Scholar 

  35. Ozturk K, Zhong Y, Chen LQ, Liu ZK, Sofo JO, Wolverton C (2005) Linking first-principles energetics to CALPHAD: an application to thermodynamic modeling of the Al–Ca binary system. Metall Mater Trans A 36:5–13

    Article  Google Scholar 

  36. Takeuchi Y, Mochizuki K, Watanabe M, Obinata I (1966) The alloys of nickel with alkaline earth metals. Metallurgy 20:2–8

    Google Scholar 

  37. Buschow KHJ (1974) Calcium–nickel intermetallic compounds. J Less Common Metals 38:95–98

    Article  Google Scholar 

  38. Saindrenan G, Vitart-Barbier J, Constantinoff M (1986) Structural study of nickel–calcium alloys containing between 0 and 15 wt% calcium. J Less Common Metals 118:227–333

    Article  Google Scholar 

  39. Notin M, Belbacha D, Rahmane M, Hertz J, Saindrenan G, Jorda JL (1990) Experimental diagram and numerical optimization of the Ca–Ni system. J Less Common Metals 162:221–229

    Article  Google Scholar 

  40. Uremovich D, Islam F, Medraj M (2006) Thermodynamic modelling of the Ca–Ni system. Sci Technol Adv Mat 7:119–126

    Article  Google Scholar 

  41. Shinoda G (1928) Use of X-ray analysis to study the improvement of Al alloys (in Japanese). Nippon Kogvo Kwai Shi 44:544–562

    Google Scholar 

  42. Manyako NB, Zarechnyuk OS, Yanson TI (1987) Crystal structure of CaNiAl9. Sov Phys Crystallogr 32:816–817

    Google Scholar 

  43. Manyako NB, Yanson TI, Zarechnyuk OS (1988) Phase equilibria in the Ca–Co(Ni)–Al systems at 770 K. Izv Akad Nauk SSSR Met 3:185–187

    Google Scholar 

  44. Massalski TB (ed) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Metals Park

    Google Scholar 

  45. Villars P, Calvert LD (1991) Pearson’s handbook of crystallographic data for intermetallic phases, 2nd edn. ASM, Materials Park

    Google Scholar 

  46. Viklund P, Haeussermann U, Lidin S (1996) NiAl3: a structure type of its own? Acta Crystallogr A Found Crystallogr A 52:C321

    Article  Google Scholar 

  47. Gavra Z, Akiba E, Murray J, Calvert LD, Taylor JB (1985) Isotherms and crystallography of the hydrides of the system Ca x Eu1−x Ni5. Mater Res Bull 20:209–215

    Article  Google Scholar 

  48. Oesterreicher H, Ensslen K, Kerlin A, Bucher E (1980) Hydriding behavior in Ca–Mg–Ni–B. Mater Res Bull 15:275–283

    Article  Google Scholar 

  49. Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425

    Article  Google Scholar 

  50. Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348

    Article  Google Scholar 

  51. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  52. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  53. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  54. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  55. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3870

    Article  Google Scholar 

  56. Perdew JP, Burke K, Ernzerhof M (1997) Emission in symmetric heavy ion reactions at subthreshold energies. Phys Rev Lett 78:1396

    Article  Google Scholar 

  57. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  58. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621

    Article  Google Scholar 

  59. Sundman B, Jansson B, Andersson JO (1985) The thermo-calc databank system. Calphad 9:153–190

    Article  Google Scholar 

  60. Chen SL, Daniel S, Zhang F, Chang YA, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2002) The PANDAT software package and its applications. Calphad 26:175–188

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude to the financial support of the National Key Technologies Research and Development Program of China (Grant No. 2016YFB0701301) and the National Natural Science Foundation of China (Grant Nos. 51371200, 51671218 and 51501229). The authors also would like to give thanks to Mr. Carl Meggs (University of Birmingham) for the English improvement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libin Liu or Ligang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TDB 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Shi, X., Bao, X. et al. Experimental investigation and thermodynamic assessment of Al–Ca–Ni ternary system. J Mater Sci 52, 12409–12426 (2017). https://doi.org/10.1007/s10853-017-1338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1338-5

Keywords

Navigation