Skip to main content
Log in

Synthesis and microwave absorbing properties of γ-Fe2O3–SiO2–poly (3,4-ethylenedioxythiophene) core–shell–shell nanocomposites

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The three-layer core–shell–shell γ-Fe2O3–SiO2–poly (3,4-ethylenedioxythiophene) (PEDOT) nanocomposite has been successfully synthesized by a facile chemical process followed by a detailed investigation of morphology, composition, electromagnetic, and microwave absorption properties. The electrical conductivity of γ-Fe2O3–SiO2–PEDOT nanocomposites was as high as 3.34 S cm−1, and the saturation magnetization was in the range of 1–7 emu g−1. The minimum reflection loss reached −27.5 dB at 13.8 GHz with a matching layer thickness of 2.0 mm and an effective absorption bandwidth (< −10 dB) of about 4.1 GHz (12.0–16.1 GHz). The excellent microwave absorbing performance of this nanocomposite is due to proper impedance matching and the synergistic interaction of dielectric loss, the magnetic loss, and core–shell microstructure. Moreover, the electromagnetic and microwave absorbing properties of γ-Fe2O3–SiO2–PEDOT nanocomposites can be regulated by changing the dosage of functionalized γ-Fe2O3–SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Melvin GJH, Ni QQ, Suzuki Y et al (2014) Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J Mater Sci 49(14):5199–5207

    Article  Google Scholar 

  2. He Q, Yuan T, Zhang X et al (2014) Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes. J Phys Chem C 118(42):24784–24796

    Article  Google Scholar 

  3. Sun H, Che R, You X et al (2014) Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 26(48):8120–8125

    Article  Google Scholar 

  4. Zhao T, Hou C, Zhang H et al (2014) Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci Rep 4:5619–5625

    Article  Google Scholar 

  5. Li Y, Chen G, Li Q et al (2011) Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. J Alloy Compd 509(10):4104–4107

    Article  Google Scholar 

  6. Benykhlef S, Bekhoukh A, Berenguer R et al (2016) PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym Sci 294(12):1877–1885

    Article  Google Scholar 

  7. Chouli F, Radja I, Morallon E et al (2015) A novel conducting nanocomposite obtained by p anisidine and aniline with titanium (IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym Compos. doi:10.1002/pc.23837

    Google Scholar 

  8. Radja I, Djelad H, Morallon E (2015) Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth Met 202:25–32

    Article  Google Scholar 

  9. Zhou W, Hu X, Bai X et al (2011) Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4–poly (3,4-ethylenedioxythiophene) microspheres. ACS Appl Mater Interfaces 3(10):3839–3845

    Article  Google Scholar 

  10. Dong XL, Zhang XF, Huang H et al (2008) Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl Phys Lett 013127(1):92–94

    Google Scholar 

  11. Liu J, Che R, Chen H et al (2012) Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8(8):1214–1221

    Article  Google Scholar 

  12. Chen YJ, Zhang F, Zhao G et al (2010) Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods. J Phys Chem C 114(20):9239–9244

    Article  Google Scholar 

  13. Wang G, Chang Y, Wang L et al (2012) Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles. Adv Powder Technol 23(6):861–865

    Article  Google Scholar 

  14. Qiu J, Wang Y, Gu M (2007) Microwave absorption properties of substituted BaFe12O19/TiO2 nanocomposite multilayer film. J Mater Sci 42(1):166–169

    Article  Google Scholar 

  15. Zhu J, Wei S, Haldolaarachchige N et al (2011) Electromagnetic field shielding polyurethane nanocomposites reinforced with core–shell Fe–silica nanoparticles. J Phys Chem C 115(31):15304–15310

    Article  Google Scholar 

  16. Deng YH, Wang CC, Hu JH et al (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A 262(1):87–93

    Article  Google Scholar 

  17. Ohlan A, Singh K, Chandra A et al (2010) Microwave absorption behavior of core–shell structured poly (3,4-ethylenedioxythiophene)–barium ferrite nanocomposites. ACS Appl Mater Interfaces 2(3):927–933

    Article  Google Scholar 

  18. Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44(15):3917–3927

    Article  Google Scholar 

  19. Liu Q, Zhang D, Fan T (2008) Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl Phys Lett 013110(1):93–96

    Google Scholar 

  20. Zhang B, Du Y, Zhang P et al (2013) Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J Appl Polym Sci 130(3):1909–1916

    Article  Google Scholar 

  21. Belaabed B, Wojkiewicz JL, Lamouri S et al (2012) Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties. J Alloy Compd 527:137–144

    Article  Google Scholar 

  22. Wang G, Gao Z, Tang S et al (2012) Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12):11009–11017

    Article  Google Scholar 

  23. Zhang Y, Zhang Z, Xu S et al (2016) Synthesis of γ-Fe2O3@SiO2@polypyrrole core/shell/shell nanospheres with flexible controllability of electromagnetic properties. RSC Adv 6(8):6623–6630

    Article  Google Scholar 

  24. Dai T, Yang X, Lu Y (2007) Conductive composites of polypyrrole and sulfonic-functionalized silica spheres. Mater Lett 61(14):3142–3145

    Article  Google Scholar 

  25. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  26. Li HY, Chang CM, Hsu KY et al (2012) Poly (lactide)-functionalized and Fe3O4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly (lactide) films and electrospun nanofibers. J Mater Chem 22(11):4855–4860

    Article  Google Scholar 

  27. Zhou H, Yao W, Li G et al (2013) Graphene/poly (3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon 59:495–502

    Article  Google Scholar 

  28. Kvarnström C, Neugebauer H, Blomquist S et al (1999) In situ FTIR spectroelectrochemical characterization of poly (3,4-ethylenedioxythiophene) films. Synth Met 101(1–3):66. doi:10.1016/S0379-6779(98)01133-3

    Article  Google Scholar 

  29. Yin Y, Li Z, Jin J et al (2013) Facile synthesis of poly (3,4-ethylenedioxythiophene) by acid-assisted polycondensation of 5-bromo-2, 3-dihydro-thieno [3,4-b][1,4] dioxine. Synth Met 175:97–102

    Article  Google Scholar 

  30. Gu J, Gao S, Xue Y et al (2016) Synthesis and characterization of PEDOT aqueous dispersions with sulfonated polyfluorene as a template and doping agent. React Funct Polym 100:83–88

    Article  Google Scholar 

  31. Unsworth J, Kaynak A, Lunn BA et al (1993) Microwave transmission, reflection and dielectric properties of conducting and semiconducting polypyrrole films and powders. J Mater Sci 28(12):3307–3312

    Article  Google Scholar 

  32. Liu X, Geng D, Shang P et al (2008) Fluorescence and microwave-absorption properties of multi-functional ZnO-coated α-Fe solid-solution nanocapsules. J Phys D Appl Phys 41(17):5006–5014

    Google Scholar 

  33. Zhang A, Tang M, Cao X et al (2014) The effect of polyethylenimine on the microwave absorbing properties of a hybrid microwave absorber of Fe3O4/MWNTs. J Mater Sci 49(13):4629–4635

    Article  Google Scholar 

  34. Zhang XF, Dong XL, Huang H et al (2007) Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J Phys D Appl Phys 40(17):5383–5387

    Article  Google Scholar 

  35. Naito Y, Suetake K (1971) Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans Microw Theory Tech 19(1):65–72

    Article  Google Scholar 

  36. Zhang D, Cheng J, Yang X et al (2014) Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures. J Mater Sci 49(20):7221–7230

    Article  Google Scholar 

  37. Qiao M, Lei X, Ma Y et al (2016) Well-defined core–shell Fe3O4@Polypyrrole composite microspheres with tunable shell thickness: synthesis and their superior microwave absorption performance in the Ku band. Ind Eng Chem Res 55(22):6263–6275

    Article  Google Scholar 

  38. Cao MS, Yang J, Song WL et al (2012) Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater Interfaces 4(12):6949–6956

    Article  Google Scholar 

  39. Chen K, Xiang C, Li L, Qian H, Xiao Q, Xu F (2012) A novel ternary composite: fabrication, performance and application of expanded graphite/polyaniline/CoFe2O4 ferrite. J Mater Chem 22(13):6449–6455

    Article  Google Scholar 

  40. Sun Y, Xiao F, Liu X, Feng C, Jin C (2013) Preparation and electromagnetic wave absorption properties of core–shell structured Fe3O4–Polyaniline nanoparticles. RSC Adv 3:22554–22559

    Article  Google Scholar 

  41. He Z, Fang Y, Wang X et al (2011) Microwave absorption properties of PANI/CIP/Fe3O4 composites. Synth Met 161(5):420–425

    Article  Google Scholar 

  42. Wang L, Zhu J, Yang H et al (2015) Fabrication of hierarchical graphene@Fe3O4@SiO2@ polyaniline quaternary composite and its improved electrochemical performance. J Alloy Compd 634:232–238

    Article  Google Scholar 

Download references

Acknowledgement

This project was supported by the National Natural Science Foundation of China (No. 41476059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Zhang or Liangmin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Zhang, Z., Jiang, X. et al. Synthesis and microwave absorbing properties of γ-Fe2O3–SiO2–poly (3,4-ethylenedioxythiophene) core–shell–shell nanocomposites. J Mater Sci 52, 12358–12369 (2017). https://doi.org/10.1007/s10853-017-1337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1337-6

Keywords

Navigation