Skip to main content
Log in

High-pressure torsion-induced phase transformations and grain refinement in Al/Ti composites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-pressure torsion (HPT) deformation of multiphase metallic systems produces a high density of interfaces and leads to atomic mixing between the constituent phases. Here we present a study of the interphase boundary structure, grain size evolution and intermetallic phase formation during HPT deformation of a nano-crystalline Al/Ti composite. High-resolution transmission electron microscopy was used to study the structural features of the interphase boundaries. The Al/Ti interphase boundaries were found to significantly promote the generation of dislocations during deformation. After HPT deformation to a shear strain of 87, the average grain sizes of Al and Ti are 22 and 31 nm, respectively. The chemical mixing between the Al and Ti phases was enhanced by defect-mediated short circuit diffusion and dislocation shuffle-controlled plastic deformation at the interphase boundaries. The intermetallic phases formed during HPT deformation are associated with the strain energy stored by the high density of dislocations at the interphase boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Straumal BB, Baretzky B, Mazilkin AA, Phillipp F, Kogtenkova OA, Volkov MN, Valiev RZ (2004) Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg alloys. Acta Mater 52(15):4469–4478

    Article  Google Scholar 

  2. Sun YF, Fujii H, Nakamura T, Tsuji N, Todaka D, Umemoto M (2011) Critical strain for mechanical alloying of Cu–Ag, Cu–Ni and Cu–Zr by high-pressure torsion. Scripta Mater 65(6):489–492

    Article  Google Scholar 

  3. Oh-ishi K, Edalati K, Kim HS, Hono K, Horita Z (2013) High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater 61(9):3482–3489

    Article  Google Scholar 

  4. Alhamidi A, Edalati K, Iwaoka H, Horita Z (2014) Effect of temperature on solid-state formation of bulk nanograined intermetallic Al3Ni during high-pressure torsion. Phil Mag 94(9):876–887

    Article  Google Scholar 

  5. Alhamidi A, Edalati K, Horita Z (2013) Production of nanograined intermetallics using high-pressure torsion. Mater Res 16:672–678

    Article  Google Scholar 

  6. Han J-K, Lee H-J, J-i Jang, Kawasaki M, Langdon TG (2017) Micro-mechanical and tribological properties of aluminum–magnesium nanocomposites processed by high-pressure torsion. Mater Sci Eng, A 684:318–327

    Article  Google Scholar 

  7. Ahn B, Zhilyaev AP, Lee H-J, Kawasaki M, Langdon TG (2015) Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater Sci Eng, A 635:109–117

    Article  Google Scholar 

  8. Lee S, Edalati K, Iwaoka H, Horita Z, Ohtsuki T, Ohkochi T, Kotsugi M, Kojima T, Mizuguchi M, Takanashi K (2014) Formation of FeNi with L10-ordered structure using high-pressure torsion. Philos Mag Lett 94(10):639–646

    Article  Google Scholar 

  9. Edalati K, Toh S, Watanabe M, Horita Z (2012) In situ production of bulk intermetallic-based nanocomposites and nanostructured intermetallics by high-pressure torsion. Scripta Mater 66(6):386–389

    Article  Google Scholar 

  10. Bahmanpour H, Sun Y, Hu T, Zhang D, Wongsa-Ngam J, Langdon TG, Lavernia EJ (2014) Microstructural evolution of cryomilled Ti/Al mixture during high-pressure torsion. J Mater Res 29(04):578–585

    Article  Google Scholar 

  11. Kawasaki M, Ahn B, Lee H, Zhilyaev AP, Langdon TG (2016) Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding. J Mater Res 31(1):88–99

    Article  Google Scholar 

  12. Kogtenkova OA, Mazilkin AA, Straumal BB, Abrosimova GE, Zięba P, Czeppe T, Baretzky B, Valiev RZ (2013) Phase transformations in Al–Mg–Zn alloys during high pressure torsion and subsequent heating. J Mater Sci 48(13):4758–4765. doi:10.1007/s10853-013-7266-0

    Article  Google Scholar 

  13. Mahesh KK, Fernandes FMB, Gurau G (2012) Stability of thermal-induced phase transformations in the severely deformed equiatomic Ni–Ti alloys. J Mater Sci 47(16):6005–6014. doi:10.1007/s10853-012-6508-x

    Article  Google Scholar 

  14. Haraguchi R, Yoshimatsu Y, Nagaoka T, Arita M, Edalati K, Horita Z (2017) Electrical resistivity mapping of titanium and zirconium discs processed by high-pressure torsion for homogeneity and phase transformation evaluation. J Mater Sci 52(11):6778–6788. doi:10.1007/s10853-017-0916-x

    Article  Google Scholar 

  15. Adachi N, Todaka Y, Irie K, Umemoto M (2016) Phase transformation kinetics of ω-phase in pure Ti formed by high-pressure torsion. J Mater Sci 51(5):2608–2615. doi:10.1007/s10853-015-9574-z

    Article  Google Scholar 

  16. Mazilkin AA, Abrosimova GE, Protasova SG, Straumal BB, Schütz G, Dobatkin SV, Bakai AS (2011) Transmission electron microscopy investigation of boundaries between amorphous “grains” in Ni50Nb20Y30 alloy. J Mater Sci 46(12):4336–4342. doi:10.1007/s10853-011-5304-3

    Article  Google Scholar 

  17. Straumal BB, Protasova SG, Mazilkin AA, Rabkin E, Goll D, Schütz G, Baretzky B, Valiev RZ (2012) Deformation-driven formation of equilibrium phases in the Cu–Ni alloys. J Mater Sci 47(1):360–367. doi:10.1007/s10853-011-5805-0

    Article  Google Scholar 

  18. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49(1):18–34. doi:10.1007/s10853-013-7687-9

    Article  Google Scholar 

  19. Révész Á, Kánya Z, Verebélyi T, Szabó PJ, Zhilyaev AP, Spassov T (2010) The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30. J Alloy Compd 504(1):83–88

    Article  Google Scholar 

  20. Edalati K, Matsuda J, Iwaoka H, Toh S, Akiba E, Horita Z (2013) High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. Int J Hydrogen Energy 38(11):4622–4627

    Article  Google Scholar 

  21. Edalati K, Matsuda J, Yanagida A, Akiba E, Horita Z (2014) Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: similarities and differences. Int J Hydrogen Energy 39(28):15589–15594

    Article  Google Scholar 

  22. Edalati K, Emami H, Ikeda Y, Iwaoka H, Tanaka I, Akiba E, Horita Z (2016) New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium–zirconium system produced by high-pressure torsion. Acta Mater 108:293–303

    Article  Google Scholar 

  23. Emami H, Edalati K, Staykov A, Hongo T, Iwaoka H, Horita Z, Akiba E (2016) Solid-state reactions and hydrogen storage in magnesium mixed with various elements by high-pressure torsion: experiments and first-principles calculations. RSC Adv 6(14):11665–11674

    Article  Google Scholar 

  24. Straumal B, Korneva A, Zięba P (2014) Phase transitions in metallic alloys driven by the high pressure torsion. Arch Civil Mech Eng 14(2):242–249

    Article  Google Scholar 

  25. Straumal BB, Mazilkin AA, Baretzky B, Schütz G, Rabkin E, Valiev RZ (2012) Accelerated diffusion and phase transformations in Co–Cu alloys driven by the severe plastic deformation. Mater Trans 53(1):63–71

    Article  Google Scholar 

  26. Straumal BB, Gornakova AS, Fabrichnaya OB, Kriegel MJ, Mazilkin AA, Baretzky B, Gusak AM, Dobatkin SV (2012) Effective temperature of high pressure torsion in Zr–Nb alloys. High Temp Mater Processes (London) 31(4–5):339–350

    Google Scholar 

  27. Vo NQ, Zhou J, Ashkenazy Y, Schwen D, Averback RS, Bellon P (2013) Atomic mixing in metals under shear deformation. JOM 65(3):382–389

    Article  Google Scholar 

  28. Medyanik SN, Shao S (2009) Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Comput Mater Sci 45(4):1129–1133

    Article  Google Scholar 

  29. Sun Y, Kulkarni K, Sachdev AK, Lavernia EJ (2014) Synthesis of γ-TiAl by reactive spark plasma sintering of cryomilled Ti and Al powder blend, part I: influence of processing and microstructural evolution. Metall MaterTrans A 45(6):2750–2758

    Article  Google Scholar 

  30. Figueiredo RB, Cetlin PR, Langdon TG (2011) Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng, A 528(28):8198–8204

    Article  Google Scholar 

  31. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 60(6–7):3190–3198

    Article  Google Scholar 

  32. Mohamed FA, Dheda SS (2012) On the minimum grain size obtainable by high-pressure torsion. Mater Sci Eng, A 558:59–63

    Article  Google Scholar 

  33. Edalati K, Akama D, Nishio A, Lee S, Yonenaga Y, Cubero-Sesin JM, Horita Z (2014) Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater 69:68–77

    Article  Google Scholar 

  34. Wen H, Zhao Y, Li Y, Ertorer O, Nesterov KM, Islamgaliev RK, Valiev RZ, Lavernia EJ (2010) High-pressure torsion-induced grain growth and detwinning in cryomilled Cu powders. Phil Mag 90(34):4541–4550

    Article  Google Scholar 

  35. Wang YB, Ho JC, Liao XZ, Li HQ, Ringer SP, Zhu YT (2009) Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy. Appl Phys Lett 94(1):011908-1–011908-3

    Google Scholar 

  36. Liao XZ, Kilmametov AR, Valiev RZ, Gao H, Li X, Mukherjee AK, Bingert JF, Zhu YT (2006) High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl Phys Lett 88(2):021909-1–021909-3

    Article  Google Scholar 

  37. Semenova I, Timokhina I, Islamgaliev R, Lavernia E, Valiev R (2015) Nanocrystalline Ti produced by cryomilling and consolidation by severe plastic deformation. Metals 5(1):206–215

    Article  Google Scholar 

  38. Sabbaghianrad S, Langdon TG (2014) A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT. Mater Sci Eng, A 596:52–58

    Article  Google Scholar 

  39. Sabbaghianrad S, Langdon TG (2015) An evaluation of the saturation hardness in an ultrafine-grained aluminum 7075 alloy processed using different techniques. J Mater Sci 50(12):4357–4365. doi:10.1007/s10853-015-8989-x

    Article  Google Scholar 

  40. Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Influence of high-pressure torsion straining conditions on microstructure evolution in commercial purity aluminum. Mater Trans 49(1):7–14

    Article  Google Scholar 

  41. Edalati K, Matsubara E, Horita Z (2009) Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall MaterTrans A 40(9):2079–2086

    Article  Google Scholar 

  42. Sauvage X, Jessner P, Vurpillot F, Pippan R (2008) Nanostructure and properties of a Cu–Cr composite processed by severe plastic deformation. Scripta Mater 58(12):1125–1128

    Article  Google Scholar 

  43. Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ (2012) Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater Sci Eng, A 540:1–12

    Article  Google Scholar 

  44. Bachmaier A, Schmauch J, Aboulfadl H, Verch A, Motz C (2016) On the process of co-deformation and phase dissolution in a hard-soft immiscible CuCo alloy system during high-pressure torsion deformation. Acta Mater 115:333–346

    Article  Google Scholar 

  45. Zhu YT, Langdon TG (2005) Influence of grain size on deformation mechanisms: an extension to nanocrystalline materials. Mater Sci Eng, A 409(1–2):234–242

    Article  Google Scholar 

  46. Sinclair CW, Embury JD, Weatherly GC (1999) Basic aspects of the co-deformation of bcc/fcc materials. Mater Sci Eng, A 272(1):90–98

    Article  Google Scholar 

  47. Hu SY, Choi J, Li YL, Chen LQ (2004) Dynamic drag of solute atmosphere on moving edge dislocations—Phase-field simulation. J Appl Phys 96(1):229–236

    Article  Google Scholar 

  48. Guo Z, Miodownik AP, Saunders N, Schillé JP (2006) Influence of stacking-fault energy on high temperature creep of alpha titanium alloys. Scripta Mater 54(12):2175–2178

    Article  Google Scholar 

  49. Karmaker G, Mukherjee P, Meikap AK, Chattopadhyay SK, Chatterjee SK (2001) An X-ray diffraction study of defect parameters in a Ti-base alloy. Bull Mater Sci 24(6):649–652

    Article  Google Scholar 

  50. Zhang WJ, Appel F (2002) Weak-beam TEM study on planar fault energies of Al-lean TiAl-base alloys. Mater Sci Eng, A 334(1–2):59–64

    Article  Google Scholar 

  51. Morishige T, Hirata T, Uesugi T, Takigawa Y, Tsujikawa M, Higashi K (2011) Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing. Scripta Mater 64(4):355–358

    Article  Google Scholar 

  52. Muzyk M, Pakiela Z, Kurzydlowski KJ (2011) Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scripta Mater 64(9):916–918

    Article  Google Scholar 

  53. An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Significance of stacking fault energy on microstructural evolution in Cu and Cu–Al alloys processed by high-pressure torsion. Phil Mag 91(25):3307–3326

    Article  Google Scholar 

  54. Zhao YH, Horita Z, Langdon TG, Zhu YT (2008) Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: influence of stacking fault energy. Mater Sci Eng, A 474(1–2):342–347

    Article  Google Scholar 

  55. Raabe D, Ohsaki S, Hono K (2009) Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Mater 57(17):5254–5263

    Article  Google Scholar 

  56. Drbohlav O, Yavari AR (1995) Mechanical alloying and thermal decomposition of ferromagnetic nanocrystalline f.c.c.-Cu50Fe50. Acta Metall Mater 43(5):1799–1809

    Article  Google Scholar 

  57. Murata Y, Nakaya I, Morinaga M (2008) Assessment of strain energy by measuring dislocation density in copper and aluminium prepared by ECAP and ARB. Mater Trans 49(1):20–23

    Article  Google Scholar 

  58. Gale WF, Totemeier TC (eds) (2004) Smithells metals reference book, 8th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  59. Mirjalili M, Soltanieh M, Matsuura K, Ohno M (2013) On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple. Intermetallics 32:297–302

    Article  Google Scholar 

  60. Sun Y, Kulkarni K, Sachdev AK, Lavernia EJ (2014) Synthesis of γ-TiAl by reactive spark plasma sintering of cryomilled Ti and Al powder blend: part II: effects of electric field and microstructure on sintering kinetics. Metall MaterTrans A 45(6):2759–2767

    Article  Google Scholar 

  61. Foadian F, Soltanieh M, Adeli M, Etminanbakhsh M (2014) A study on the formation of intermetallics during the heat treatment of explosively welded Al–Ti multilayers. Metall MaterTrans A 45(4):1823–1832

    Article  Google Scholar 

  62. Sun Y, Haley J, Kulkarni K, Aindow M, Lavernia EJ (2015) Influence of electric current on microstructure evolution in Ti/Al and Ti/TiAl3 during spark plasma sintering. J Alloy Compd 648:1097–1103

    Article  Google Scholar 

  63. Kulkarni KN, Sun Y, Sachdev AK, Lavernia E (2013) Field-activated sintering of blended elemental γ-TiAl powder compacts: porosity analysis and growth kinetics of Al3Ti. Scripta Mater 68(11):841–844

    Article  Google Scholar 

  64. Gachon JC, Rogachev AS, Grigoryan HE, Illarionova EV, Kuntz JJ, Kovalev DY, Nosyrev AN, Sachkova NV, Tsygankov PA (2005) On the mechanism of heterogeneous reaction and phase formation in Ti/Al multilayer nanofilms. Acta Mater 53(4):1225–1231

    Article  Google Scholar 

  65. Wöhlert S, Bormann R (1999) Phase selection governed by different growth velocities in the early stages of the Ti/Al phase reaction. J Appl Phys 85(2):825–832

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant Nos. CMMI-1601087 (EJL) and DMR-1160966 (TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Aindow, M., Hebert, R.J. et al. High-pressure torsion-induced phase transformations and grain refinement in Al/Ti composites. J Mater Sci 52, 12170–12184 (2017). https://doi.org/10.1007/s10853-017-1331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1331-z

Keywords

Navigation