Skip to main content
Log in

Infiltration of graphite by molten 2LiF–BeF2 salt

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the aim of developing neutron moderator and neutron reflector materials for fluoride-salt-cooled high-temperature reactors (FHRs), static infiltration tests were performed on graphite materials in molten 2LiF–BeF2 (FLiBe) salt, which is a potential primary coolant, at 700 °C and various pressures. The weight gain ratios of four grades (NBG-18, IG-110, NG-CT-10, and NG-CT-50) of graphite after infiltration were measured to determine their infiltration curves. The threshold pressure for FLiBe salt infiltration for the ultrafine-grained graphite (NG-CT-50) was greater than 600 kPa and much higher than those of the other three grades (medium-grained/fine-grained graphites), indicating that this graphite grade more probably resists salt infiltration in FHRs than other grades of graphite. However, if the threshold pressure is exceeded, it has the highest potential capacity for infiltrated salt over the pressures tested. The four grades were also characterized using mercury intrusion porosimetry. It was found that the infiltration curves of these two unwetting liquids were very similar. Scanning electron microscopy characterization showed that the FLiBe salt was distributed relatively uniformly in all four grades, indicating the presence of interconnected networks of open pores throughout the samples. X-ray diffraction patterns showed that infiltration test at high pressure led to an improved structural order and a decreased d-spacing in graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. A Technology Roadmap for Generation IV Nuclear Energy Systems (2002) Generation IV International Forum, GIF-002-00

  2. Serp J, Allibert M, Beneš O, Delpech S, Feynberg O, Ghetta V (2014) The molten salt reactor (MSR) in generation IV: overview and perspectives. Prog Nucl Energy 77:308–319. doi:10.1016/j.pnucene.2014.02.014

    Article  Google Scholar 

  3. LeBlanc D (2010) Molten salt reactors: a new beginning for an old idea. Nucl Eng Des 240(6):1644–1656. doi:10.1016/j.nucengdes.2009.12.033

    Article  Google Scholar 

  4. Williams DF, Clarno KT (2008) Evaluation of salt coolants for reactor applications. Nucl Technol 163:330–343

    Google Scholar 

  5. Khokhlov V, Ignatiev V, Afonichkin V (2009) Evaluating physical properties of molten salt reactor fluoride mixtures. J Fluor Chem 130(1):30–37. doi:10.1016/j.jfluchem.2008.07.018

    Article  Google Scholar 

  6. Delpech S, Cabet C, Slim C, Picard G (2010) Molten fluorides for nuclear applications. Mater Today 13(12):34–41. doi:10.1016/S1369-7021(10)70222-4

    Article  Google Scholar 

  7. Briggs RB (1961) Molten-salt reactor program progress report Oak Ridge National Laboratory, ORNL-3122

  8. MacPherson HG (1959) Molten-salt reactor project: quarterly progress report. Oak Ridge National Laboratory, ORNL-2723

  9. He Z, Gao L, Wang X, Zhang B, Qi W, Song J, He X, Zhang C, Tang H, Xia H, Zhou X (2014) Improvement of stacking order in graphite by molten fluoride salt infiltration. Carbon 72:304–311. doi:10.1016/j.carbon.2014.02.010

    Article  Google Scholar 

  10. Kasten PR, Bettis ES, Cook WH, Eatherly WP, Holmes DK, Kedl RJ, Kennedy CR, Kirslis SS, McCoy HE, Perry AM, Robertson RC, Scott D, Strehlow RA (1969) Graphite behavior and its effects on MSBR performance. Nucl Eng Des 9(2):157–195. doi:10.1016/0029-5493(69)90057-0

    Article  Google Scholar 

  11. Calderon NR, Voytovych R, Narciso J, Eustathopoulos N (2010) Pressureless infiltration versus wetting in AlSi/graphite system. J Mater Sci 45(16):4345–4350. doi:10.1007/s10853-010-4358-y

    Article  Google Scholar 

  12. Rodriguez A, Sanchez SA, Narciso J, Louis E, Rodriguez-Reinoso F (2005) Pressure infiltration of Al–Si alloys into compacts made of carbon particles. J Mater Sci 40(9–10):2519–2523. doi:10.1007/s10853-005-1985-9

    Article  Google Scholar 

  13. Yang J, Chung DDL (1989) Casting particulate and fibrous metal matrix composites by vacuum infiltration of a liquid metal under an inert gas pressure. J Mater Sci 24(10):3605–3612. doi:10.1007/BF02385746

    Article  Google Scholar 

  14. Alonso A, Pamies A, Narciso J, Garcia-Cordovilla C, Louis E (1993) Evaluation of the wettability of liquid aluminum with ceramic particulates (SiC, TiC, AI2O3) by means of pressure infiltration. Metall Trans A 24(6):1423–1432. doi:10.1007/BF02668210

    Article  Google Scholar 

  15. Garcia-Cordovilla C, Louis E, Narciso J (1999) Pressure infiltration of packed ceramic particulates by liquid metals. Acta Mater 47(18):4461–4479. doi:10.1016/S1359-6454(99)00318-3

    Article  Google Scholar 

  16. Briggs RB (1962) Molten-salt reactor program: semiannual progress report. Oak Ridge National Laboratory, ORNL-3282

  17. Flanagan GF, Holcomb DE, Cetiner SM (2012) FHR generic design criteria. Oak Ridge National Laboratory, ORNL/TM-2012/226

  18. Allen T, Ball S, Blandford E, Downar T, Flanagan G, Forsberg C (2013) Fluoride-salt-cooled, high-temperature reactor (FHR) subsystems definition, functional requirement definition, and licensing basis event (LBE) identification white paper. Integrated research project workshop, UCBTH-12-001

  19. El-Genk MS, Tournier JMP (2012) Comparison of oxidation model predictions with gasification data of IG-110, IG-430 and NBG-25 nuclear graphite. J Nucl Mater 420(1):141–158. doi:10.1016/j.jnucmat.2011.09.027

    Article  Google Scholar 

  20. Ingersoll DT, Parma EJ, Forsberg CW, Renier JP (2012) Core physics characteristics and issues for the advanced high-temperature reactor (AHTR). Oak Ridge National Laboratory

  21. Briggs RB (1964) Molten-salt reactor program: semiannual progress report. Oak Ridge National Laboratory, ORNL-3626

  22. Sheil RJ, Evans RB, Watson GM (1959) Molten salt-graphite compatibility test. Results of physical and chemical measurements. Oak Ridge National Laboratory, ORNL-59-8-133

  23. Preliminary Fluoride Salt-Cooled High Temperature Reactor (FHR) Materials, Fuels and Components White Paper (2012) Integrated research project (IRP) workshop 3, UCBTH-12-003

  24. Molina JM, Rodriguez-Guerrero A, Bahraini M, Weber L, Narciso J, Rodriguez-Reinoso F, Louis E, Mortensen A (2007) Infiltration of graphite preforms with Al–Si eutectic alloy and mercury. Scripta Mater 56(11):991–994. doi:10.1016/j.scriptamat.2007.01.042

    Article  Google Scholar 

  25. He Z, Gao L, Qi W, Zhang B, Wang X, Song J, He X, Zhang C, Tang H, Rolmes H, Xia H, Zhou X (2015) Molten FLiNaK salt infiltration into degassed nuclear graphite under inert gas pressure. Carbon 84:511–518. doi:10.1016/j.carbon.2014.12.044

    Article  Google Scholar 

  26. Kane J, Karthik C, Butt DP, Windes WE, Ubic R (2011) Microstructural characterization and pore structure analysis of nuclear graphite. J Nucl Mater 415(2):189–197. doi:10.1016/j.jnucmat.2011.05.053

    Article  Google Scholar 

  27. Sure J, Shankar AR, Ramya S, Mallika C, Mudali UK (2014) Corrosion behavior of carbon materials exposed to molten lithium chloride–potassium chloride salt. Carbon 67:643–655. doi:10.1016/j.carbon.2013.10.040

    Article  Google Scholar 

  28. Willis KL, Abell AB, Lange DA (1998) Image-based characterization of cement pore structure using wood’s metal intrusion. Cem Concr Res 28(12):1695–1705. doi:10.1016/S0008-8846(98)00159-8

    Article  Google Scholar 

  29. Huang WH, Tsai SC, Yang CW, Kai JJ (2014) The relationship between microstructure and oxidation effects of selected IG-and NBG-grade nuclear graphites. J Nucl Mater 454(1):149–158. doi:10.1016/j.jnucmat.2014.07.052

    Article  Google Scholar 

  30. Zheng G, Xu P, Sridharan K, Allen T (2014) Characterization of structural defects in nuclear graphite IG-110 and NBG-18. J Nucl Mater 446(1):193–199. doi:10.1016/j.jnucmat.2013.12.013

    Article  Google Scholar 

  31. Burns JH, Gordon EK (1966) Refinement of the crystal structure of Li2BeF4. Acta Crystallogr A 20(1):135–138. doi:10.1107/S0365110X66000240

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the strategic priority research program of Thorium-based Molten-salt Reactor (TMSR) (Grant No. XDA02040100) and National Natural Science Foundation of China (Nos. 11305240 and 21406257).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhoutong He or Huihao Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Qi, W., He, Z. et al. Infiltration of graphite by molten 2LiF–BeF2 salt. J Mater Sci 52, 11346–11359 (2017). https://doi.org/10.1007/s10853-017-1310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1310-4

Keywords

Navigation