Skip to main content
Log in

Electronic and optical properties of the wurtzite-ZnO/CH3NH3PbI3 interface: first-principles calculations

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The atomistic geometry, binding energy, optical and electronic properties of wurtzite-ZnO (WZ-ZnO) (100)/CH3NH3PbI3 (MAPbI3) (112) interface were studied with the first-principles calculations. The lattice mismatch of this interface is 8.9%, and the interface binding energy is −0.164 J/m2. Interface states appear nearby the Fermi level, which come from the contribution of O-2p orbital, I-5p orbital and Pb-6s orbital. The atom orbitals of WZ-ZnO (100)/MAPbI3 (112) interface have hybridizations. Through the analysis of charge density difference and Bader atomic charges, it is found that there is obvious charge transfer at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  Google Scholar 

  2. Yin WJ, Shi TT, Yan YF (2014) Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett 104:063903

    Article  Google Scholar 

  3. Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A (2014) Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J Phys Chem Lett 5:2662–2669

    Article  Google Scholar 

  4. Xing GC, Mathews N, Sun SY, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342(6156):344–347

    Article  Google Scholar 

  5. Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842

    Article  Google Scholar 

  6. Dar MI, Arora N, Gao P, Ahmad S, Grätzel M, Nazeeruddin MK (2014) Investigation regarding the role of chloride in organic–inorganic halide perovskites obtained from chloride containing precursors. Nano Lett 14:6991–6996

    Article  Google Scholar 

  7. Kim HS, Im SH, Park NG (2014) Organolead halide perovskite: new horizons in solar cell research. J Phys Chem C 118(11):5615–5625

    Article  Google Scholar 

  8. Dequilettes DW, Vorpahl SM, Stranks SD, Naqaoka H, Eperon GE, Ziffer ME, Snaith HJ, Ginqer DS (2015) Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348:683–686

    Article  Google Scholar 

  9. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947

    Article  Google Scholar 

  10. Liu DY, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8:133–138

    Article  Google Scholar 

  11. Ku Z, Rong Y, Xu M, Liu T, Han H (2013) Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci Rep 3:3132

    Article  Google Scholar 

  12. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  Google Scholar 

  13. Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith HJ (2014) Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ Sci 7(3):1142–1147

    Article  Google Scholar 

  14. Kojima A, Teshima K, Shirai Y, Miyasaka T (2006) Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). In: ECS meeting, p 397

  15. Wang KC, Shen PS, Li MH, Chen S, Lin MW, Chen P, Guo TF (2014) Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl Mater Interfaces 6(15):11851–11858

    Article  Google Scholar 

  16. Wang JJ, Wang SR, Li XG, Zhu LF, Meng QB, Xiao Y, Li DM (2014) Novel hole transporting materials with a linear pi-conjugated structure for highly efficient perovskite solar cells. Chem Commun 50:5829–5832

    Article  Google Scholar 

  17. Shi JJ, Xu X, Li DM, Meng QB (2015) Interfaces in perovskite solar cells. Small 11(21):2472–2486

    Article  Google Scholar 

  18. Yang JL, Siempelkamp BD, Mosconi E, Angelis FD, Kelly TL (2015) Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater 27(12):4229–4236

    Article  Google Scholar 

  19. Zhou XZ, Li XL, Liu Y, Huang F, Zhong DY (2016) Interface electronic properties of co-evaporated MAPbI3 on ZnO (0001): in situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy study. Appl Phys Lett 108(12):121601

    Article  Google Scholar 

  20. Zhang JH, Li FS, Yang KY, Veeramalai CP, Guo TL (2016) Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode. Appl Surf Sci 369:308–313

    Article  Google Scholar 

  21. Zhou HW, Shi YT, Wang K, Dong QS, Bai XG, Xing YJ, Du Y, Ma TL (2015) Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. J Phys Chem C 119(9):4600–4605

    Article  Google Scholar 

  22. Song JX, Bian J, Zheng EQ, Wang XF, Tian WJ, Miyasaka T (2015) Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chem Lett 44(5):610–612

    Article  Google Scholar 

  23. Son DY, Im JH, Kim HS, Park NG (2014) 11% Efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118(30):16567–16573

    Article  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  Google Scholar 

  26. Yu J, Lin X, Wang JJ, Chen J, Huang WD (2009) First-principles study of the relaxation and energy of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces. Appl Surf Sci 255(22):9032–9039

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  28. Ma LC, Zhang JM, Xu KW (2013) Magnetic and electronic properties of Fe/Cu multilayered nanowires: a first-principles investigation. Physica E 50:1–5

    Article  Google Scholar 

  29. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  Google Scholar 

  30. Gajdoš M, Hummer K, Kresse G (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73(4):045112

    Article  Google Scholar 

  31. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. J Chem Phys 23:1833–1840

    Article  Google Scholar 

  32. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  33. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360

    Article  Google Scholar 

  34. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Cryst 41:653–658

    Article  Google Scholar 

  35. Cheng YW, Tang FL, Xue HT, Liu HX, Gao B, Feng YD (2016) First-principles study on electronic properties and lattice structures of WZ-ZnO/CdS interface. Mat Sci Semicon Proc 45:9–16

    Article  Google Scholar 

  36. Weber D (1978) CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z Naturforsch B 33(12):1443–1445

    Article  Google Scholar 

  37. Poglitsch A, Weber D (1987) Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys 87(11):6373–6378

    Article  Google Scholar 

  38. Kawamura Y, Mashiyama H, Hasebe K (2002) Structural study on cubic-tetragonal transition of CH3NH3PbI3. J Phys Soc Jpn 71:1694–1697

    Article  Google Scholar 

  39. Onoda-Yamamuro N, Matsuo T, Suga H (1990) Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J Phys Chem Solids 51(12):1383–1395

    Article  Google Scholar 

  40. Zhou JG, Causon DM, Mingham CG, Ingram DM (2001) The surface gradient method for the treatment of source terms in the shallow-water equations. J Comput Phys 168(1):1–25

    Article  Google Scholar 

  41. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(23):16223–16233

    Article  Google Scholar 

  42. Cheng YW, Tang FL, Xue HT, Liu HX, Gao B, Feng YD (2016) Bonding and electronic properties of the Cu2ZnSnS4/WZ–ZnO interface from first-principles calculations. J Phys D Appl Phys 49(28):285107–285117

    Article  Google Scholar 

  43. Liu HX, Tang FL, Xue HT, Zhang Y, Cheng YW, Feng YD (2016) Lattice structures and electronic properties of WZ-CuInS2/WZ-CdS interface from first-principles calculations. Chin Phys B 25(12):211–220

    Google Scholar 

  44. Leguy AMA, Azarhoosh P, Alonso MI, Campoy-Quiles M, Weber OJ, Yao JZ, Bryant D, Weller MT, Nelson J, Walsh A, Schilfgaarde MV, Barnes PRF (2016) Experimental and theoretical optical properties of methylammonium lead halide perovskites. Nanoscale 8:6317–6327

    Article  Google Scholar 

  45. Green MA, Jiang YJ, Soufiani AM, Ho-Baillie A (2015) Optical properties of photovoltaic organic–inorganic lead halide perovskites. J Phys Chem Lett 6:4774–4785

    Article  Google Scholar 

  46. Umari P, Mosconi E, De Angelis F (2014) Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Rep 4(3):4467

    Google Scholar 

  47. Xie ZA, Liu SF, Qin LX, Pang SP, Wang W, Yan Y, Yao L, Chen ZJ, Wang SF, Du HL, Yu MH, Qin GG (2015) Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Opt Mater Express 5(1):29–43

    Article  Google Scholar 

  48. Ozawa K, Mase K (2011) Comparison of the surface electronic structures of H-adsorbed ZnO surfaces: an angle-resolved photoelectron spectroscopy study. Phys Rev B 83(12):5121–5124

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11764027 and 11364025). This work was performed in the Gansu Supercomputer Center. Tang was financially supported by Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuling Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, F., Hu, W., Tang, F. et al. Electronic and optical properties of the wurtzite-ZnO/CH3NH3PbI3 interface: first-principles calculations. J Mater Sci 52, 13841–13851 (2017). https://doi.org/10.1007/s10853-017-1276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1276-2

Keywords

Navigation