Skip to main content
Log in

Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We investigated the combined effects of temperature and X-rays exposures on the nature of point defects generated in Ge-doped multimode optical fibers. Electron paramagnetic resonance (EPR) results on samples X-ray irradiated at 5 kGy(SiO2), employing different temperatures and dose rates, are reported and discussed. The data highlight the generation of the Ge(1), Ge(2), E′Ge and E′Si defects. For the Ge(1) and Ge(2), we observed a decrease in the induced defect concentrations for irradiation temperatures higher than ~450 K, whereas the E′ defects feature an opposite tendency. The comparison with previous post-irradiation thermal treatments reveals peculiar effects of the temperature increase during the irradiation. Such difference, confirmed also by online radiation-induced attenuation measurements, has to be considered for practical use of these fibers in a mixed environment. Importantly, even if post-irradiation fading should be considered, the Ge(1) and Ge(2) concentrations measured by postmortem EPR experiments in room-temperature-irradiated samples are quite representative of the concentrations induced in the temperature range 230–450 K regardless of the investigated dose rate. The enhancement of the E′ content can be related to the simultaneous generation of this defect with non-bridging oxygen hole center from strained bonds implying a relevant modification of the defects generation/formation processes in the host glass matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Pacchioni G, Skuja L, Griscom DL (2000) Defects in SiO2 and related dielectrics: science and technology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  2. Mihailov SJ (2012) Fiber Bragg grating sensors for harsh environments. Sensors 12:1898–1918

    Article  Google Scholar 

  3. Benabdesselam M, Mady F, Girard S, Mebrouk Y, Duchez JB, Gaillardin M, Paillet P (2013) Performance of Ge-doped optical fiber as a thermoluminescent dosimeter. IEEE Trans Nucl Sci 60:4251–4256

    Article  Google Scholar 

  4. Ghomeishi M, Mahdiraji GA, Mahamd Adikan FR, Ung NM, Bradley DA (2015) Sensitive fibre-based thermoluminescence detectors for high resolution in-vivo dosimetry. Sci Rep 5:13309

    Article  Google Scholar 

  5. Neustruev VB (1994) Colour centres in germanosilicate glass and optical fibres. J Phys Condens Matter 6:6901–6936

    Article  Google Scholar 

  6. Fujimaki M, Kasahara T, Shimoto S, Miyazaki N, Tokuhiro S, Seol KS, Ohki Y (1999) Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass. Phys Rev B 60:4682–4687

    Article  Google Scholar 

  7. Alessi A, Girard S, Marcandella C, Cannas M, Boukenter A, Ouerdane Y (2011) Micro-Raman investigation of X or γ irradiated Ge doped fibers. Nucl Istrum Method B 269:1346–1349

    Article  Google Scholar 

  8. Takahashi M, Uchino T, Yoko T (2002) Correlation between macro- and microstructural changes in Ge: SiO2 and SiO2 glasses under intense ultraviolet irradiation. J Am Ceram Soc 85:1089–1092

    Article  Google Scholar 

  9. Alessi A, Agnello S, Grandi S, Parlato A, Gelardi FM (2009) Refractive index change dependence on Ge(1) defects in γ-irradiated Ge-doped silica. Phys Rev B 80:014103

    Article  Google Scholar 

  10. Essid M, Albert J, Brebner JL, Awazu K (1999) Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms. J Non-Cryst Solids 246:39–45

    Article  Google Scholar 

  11. Tsai TE, Saifi MA, Friebele EJ, Griscom DL, Osterberg U (1989) Correlation of defect centers with second-harmonic generation in Ge-doped and Ge–P-doped silica-core single-mode fibers. Opt Lett 14:1023–1025

    Article  Google Scholar 

  12. Gallagher M, Osterberg U (1993) Spectroscopy of defects in germanium-doped silica glass. J Appl Phys 74:2771–2778

    Article  Google Scholar 

  13. Skuja L (1992) Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study. J Non-Cryst Solids 149:77–95

    Article  Google Scholar 

  14. Alessi A, Girard S, Cannas M, Agnello S, Boukenter A, Ouerdane Y (2011) Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing. Opt Express 19:11680–11690

    Article  Google Scholar 

  15. Nishii J, Kintaka K, Hosono H, Kawazoe H, Kato M, Muta K (1999) Pair generation of Ge electron centers and self-trapped hole centers in GeO2–SiO2 glasses by KrF excimer-laser irradiation. Phys Rev B 60:7166–7169

    Article  Google Scholar 

  16. Griscom DL (2011) On the natures of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set. Opt Mater Express 1:400–412

    Article  Google Scholar 

  17. Giacomazzi L, Martin-Samos L, Boukenter A, Ouerdane Y, Girard S, Richard N (2015) Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study. Opt Mater Express 5:1054–1064

    Article  Google Scholar 

  18. Awazu K, Kawazoe H, Yamane M (1990) Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2: GeO2 glasses heated under an H2 atmosphere. J Appl Phys 68:2713–2718

    Article  Google Scholar 

  19. Alessi A, Girard S, Reghioua I, Fanetti M, Di Francesca D, Agnello S, Cannas M, Marcandella C, Martin-Samos L, Richard N, Boukenter A, Ouerdane Y (2015) Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers. J Appl Phys 118:085901

    Article  Google Scholar 

  20. Skuja L, Naber A (1996) Site-selective luminescence study of defects. in gamma-irradiated glassy germanium dioxide. Nucl Instrum Method B 116:549–553

    Article  Google Scholar 

  21. Fribele EJ, Griscom DL (1986) Color centers in glass optical fiber waveguides. Mat Res Soc Symp Proc 61:319–331

    Article  Google Scholar 

  22. Anoikin EV, Guryanov AN, Gusovskii DD, Mashinskii VM, Miroshnichenko SI, Neustruev VB, Tikhomirov VA, Zverev YB (1991) Photoinduced defects in silica glass doped with germanium and cerium. Sov Lightw Commun 1:123–131

    Google Scholar 

  23. Poulios DP, Bigelow NP, Spoonhower JP (2000) Use of optically detected magnetic resonance to correlate germanium electron centres with UV absorption bands in x-ray irradiated germanosilicate glasses. J Phys Condens Matter 12:8309–8319

    Article  Google Scholar 

  24. Chiodini N, Meinardi F, Morazzoni F, Paleari A, Scotti R (1999) Optical transitions of paramagnetic Ge sites created by x-ray irradiation of oxygen-defect-free Ge-doped SiO 2 by the sol-gel method. Phys Rev 60:2429–2435

    Article  Google Scholar 

  25. Griscom DL (1995) γ-ray-induced optical attenuation in Ge-doped-silica fiber image guides. J Appl Phys 78:6697–6704

    Article  Google Scholar 

  26. Awazu K, Muta K-I, Kawazoe H (1993) Formation mechanism of hydrogen-associated defect with an 11.9 mT doublet in electron spin resonance and red luminescence in 9SiO2: GeO2 fibers. J Appl Phys 74:2237–2240

    Article  Google Scholar 

  27. Girard S, Marcandella C, Morana A, Perisse J, Di Francesca D, Paillet P, Macé J-R, Boukenter A, Leon M, Gaillardin M, Richard N, Raine M, Agnello S, Cannas M, Ouerdane Y (2013) Combined high dose and temperature radiation effects on multimode silica-based optical fibers. IEEE Trans Nucl Sci 60:4305–4313

    Article  Google Scholar 

  28. Alessi A, Di Francesca D, Girard S, Agnello S, Cannas M, Reghioua I, Martin-Samos L, Marcandella C, Richard N, Paillet P, Boukenter A, Ouerdane Y (2016) Irradiation temperature influence on the in situ measured radiation induced attenuation of Ge-doped fibers. IEEE Trans Sci Nucl. doi:10.1109/TNS.2016.2627598 (in press)

    Google Scholar 

  29. West RH (1999) Predicting the radiation induced loss in Ge doped optical fibres at different temperatures proceeding of radiation and its effects on components and systems, 1999. RADECS 99. In: 1999 Fifth European Conference on:13–17, doi:10.1109/RADECS.1999.858629

  30. Griscom DL, Gingerich ME, Friebele EJ (1994) Model for the dose, dose-rate and temperature dependence of radiation-induced loss in optical fibers. IEEE Trans Nucl Sci 41:523–527

    Article  Google Scholar 

  31. Delepine-Lesoille S, Phéron X, Bertrand J, Pilorget G, Hermand G, Farhoud R, Ouerdane Y, Boukenter A, Girard S, Lablonde L, Sporea D, Lanticq V (2012) Industrial qualification process for optical fibers distributed strain and temperature sensing in nuclear waste repositories. J Sensors. doi:10.1155/2012/369375

    Google Scholar 

  32. Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y (2011) X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions. J Non-Cryst Solids 357:1966–1970

    Article  Google Scholar 

  33. Alessi A, Agnello S, Gelardi FM (2012) Properties and generation by irradiation of germanium point defects. In: Germanno RV (ed) Ge-doped silica in germanium properties production and applications. Nova Science Publishers, New York, pp 75–150

    Google Scholar 

  34. Di Francesca D, Boukenter A, Agnello S, Girard S, Alessi A, Paillet P, Marcandella C, Richard N, Gelardi FM, Ouerdane Y (2014) X-ray irradiation effects on fluorine-doped germanosilicate optical fibers. Opt Mater Express 4:1683–1695

    Article  Google Scholar 

  35. Agnello S, Boscaino R, Cannas M, Gelardi FM (2001) Instantaneous diffusion effect on spin-echo decay: Experimental investigation by spectral selective excitation. Phys Rev B 64:174423

    Article  Google Scholar 

  36. Alessi A, Agnello S, Gelardi FM, Messina G, Carpanese M (2011) Influence of Ge doping level on the EPR signal of Ge(1), Ge(2) and E′Ge defects in Ge-doped silica. J Non-Cryst Solids 357:1900–1903

    Article  Google Scholar 

  37. Griscom DL (1984) Characterization of three E′-center variants in X- and γ-irradiated high purity a-SiO2 Nucl. Instrum Methods Phys Res B 1:481–488

    Article  Google Scholar 

  38. Girard S, Ouerdane Y, Origlio G, Marcandella C, Boukenter A, Richard N, Baggio J, Paillet P, Cannas M, Bisutti J, Muenier J-P, Boscaino R (2008) Radiation effects on silica-based preforms and optical fibers—I: experimental study with canonical samples. IEEE Trans Nucl Sci 55:3473–3482

    Article  Google Scholar 

  39. Cannizzo A, Agnello S, Boscaino R, Cannas M, Gelardi FM, Grandi S, Leone M (2003) Role of vitreous matrix on the optical activity of Ge-doped silica. J Phys Chem Solids 64:2437–2443

    Article  Google Scholar 

  40. Jin J, Liu C, Liu J, Hou Y (2016) Modeling and analyzing the temperature sensitivity of radiation-induced attenuation in a Ge-P co-doped fiber. Chin Opt Lett 14:30601

    Article  Google Scholar 

  41. Agnello S, Alessi A, Gelardi FM, Boscaino R, Parlato A, Grandi S, Magistris A (2008) Effect of oxygen deficiency on the radiation sensitivity of sol-gel Ge-doped amorphous SiO2. Eur Phys J B 61:25–31

    Article  Google Scholar 

  42. Agnello S, Boscaino R, Cannas M, Gelardi FM, La Mattina F, Grandi S, Magistris A (2003) Ge related centers induced by gamma irradiation in sol–gel Ge-doped silica. J Non-Cryst Solids 322:134–138

    Article  Google Scholar 

  43. Imai H, Arai K, Isoya J, Hosono H, Abe Y, Imagawa H (1993) Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation. Phys Rev B 48:3116–3123

    Article  Google Scholar 

  44. Alessi A, Girard S, Cannas M, Agnello S, Boukenter A, Ouerdane Y (2012) Influence of drawing conditions on the properties and radiation sensitivities of pure-silica-core optical fibers. J Lightw Technol 30:1726–1732

    Article  Google Scholar 

  45. Pacchioni G, Ieranò G (1997) Ab initio formation energies of point defects in pure and Ge-doped SiO2. Phys Rev B 56:7304–7312

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the members of the Laboratory of Advanced Materials Physics (LAMP) group (http://www.unipa.it/lamp/) for support with interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alessi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessi, A., Agnello, S., Girard, S. et al. Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers. J Mater Sci 52, 10697–10708 (2017). https://doi.org/10.1007/s10853-017-1244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1244-x

Keywords

Navigation