Journal of Materials Science

, Volume 52, Issue 18, pp 10853–10870 | Cite as

Modeling the thermodynamic behavior and shock response of Ti systems at the atomic scales and the mesoscales

  • Garvit Agarwal
  • Avinash M. DongareEmail author


The ‘quasi-coarse-grained dynamics’ (QCGD) method is extended to model the thermodynamic behavior and the shock response of HCP Ti systems at the mesoscales by coarse-graining the atomistic microstructure using representative atoms (R-atoms) and scaled interatomic potentials. To demonstrate the capability of the QCGD method, the melting behavior of a single-crystal slab of HCP Ti and the dynamic failure (spallation) behavior of nanocrystalline systems under shock loading conditions are first investigated using molecular dynamics (MD) simulations using an embedded atom method interatomic potential for Ti. The melting simulation suggests an interplay between the nucleation and propagation of the surface-induced heterogeneous melting and the nucleation and propagation of bulk homogeneous melting of the system. In addition, the spall strengths calculated using MD at strain rates of 1010 s−1 allow the development of improved models for the strain rate dependence of the spall strength determined experimentally at 105 s−1. The QCGD method is observed to be capable of reproducing the MD-predicted kinetics of melting and the shock response and spall failure of nanocrystalline Ti systems using a coarse-grained microstructure comprising of representative atoms (R-atoms). The QCGD simulations demonstrate the ability to model the mesoscale behavior of Ti systems by modeling the shock deformation and failure due to spallation of a 1 µm × 1 µm × 2 µm sized system at strain rates of 108 s−1 to bridge the gap between MD simulations and experiments.



This material is based upon work supported by the US Army Research Office under Contract/Grant Number W911NF-14-1-0257. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the US Army Research Office or of the US Government.


  1. 1.
    Cain V, Thijs L, Van Humbeeck J, Van Hooreweder B, Knutsen R (2015) Crack propagation and fracture toughness of Ti-6Al-4V alloy produced by selective laser melting. Addit Manuf 5:68–76CrossRefGoogle Scholar
  2. 2.
    Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1–4:87–98CrossRefGoogle Scholar
  3. 3.
    Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A 651:198–213CrossRefGoogle Scholar
  4. 4.
    Wauthle R, Vrancken B, Beynaerts B, Jorissen K, Schrooten J, Kruth J, Humbeeck JV (2015) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84CrossRefGoogle Scholar
  5. 5.
    National Research Council (2011) Opportunities in protection materials science and technology for future army applications. The National Academies Press, Washington, DCGoogle Scholar
  6. 6.
    Meyers MA, Subhash G, Kada BK, Prasad L (1994) Evolution of microstructure and shear-band formation in α-hcp titanium. Mech Mater 17:175–193CrossRefGoogle Scholar
  7. 7.
    Montgomery JS, Wells MGH, Roopchand B, Ogilvy JW (1997) Low-cost titanium armors for combat vehicles. JOM 49:45–47CrossRefGoogle Scholar
  8. 8.
    Nemat-Nasser S, Guo WG, Cheng JY (1999) Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater 47:3705–3720CrossRefGoogle Scholar
  9. 9.
    Chichili DR, Ramesh KT, Hemker KT (1998) The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater 46:1025–1043CrossRefGoogle Scholar
  10. 10.
    Khan AS, Yu S (2012) Deformation induced anisotropic responses of Ti–6Al–4V alloy. Part I: experiments. Int J Plast 38:1–13CrossRefGoogle Scholar
  11. 11.
    Ghaderi A, Barnett MR (2011) Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater 59:7824–7839CrossRefGoogle Scholar
  12. 12.
    Huang W, Zan X, Nie X, Gong M, Wang Y, Xia Y (2007) Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures. Mat Sci Eng A 443:33–41CrossRefGoogle Scholar
  13. 13.
    Curran DR, Seaman L, Shockey DA (1987) Dynamic failure of solids. Phys Rep 147:253–388CrossRefGoogle Scholar
  14. 14.
    Meyers MA (1994) Dynamic behavior of materials. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  15. 15.
    Dandekar DP, Spletzer SV (2000) Shock response of Ti-6Al-4V. AIP Conf Proc 505:427–430CrossRefGoogle Scholar
  16. 16.
    Boidin X, Chevrier P, Klepaczko JR, Sabar H (2006) Identification of damage mechanism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy. Int J Solids Struct 43:4595–4615CrossRefGoogle Scholar
  17. 17.
    Xue Q, Meyers MA, Nesterenko VF (2002) Self-organization of shear bands in titanium and Ti–6Al–4V alloy. Acta Mater 50:575–596CrossRefGoogle Scholar
  18. 18.
    Meyers MA, Subhash G, Kad BK, Prasad L (1994) Evolution of microstructure and shear-band formation in α-hcp titanium. Mech Mater 17:175–193CrossRefGoogle Scholar
  19. 19.
    Meyers MA, Pak HR (1986) Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy. Acta Metall Mater 34:2493–2499CrossRefGoogle Scholar
  20. 20.
    Remington BA, Bazan G, Belak J, Bringa E, Caturla M, Colvin JD, Edwards MJ, Glendinning SG, Ivanov DS, Kad B, Kalantar DH, Kumar M, Lasinski BF, Lorenz KT, McNaney JM, Meyerhofer DD, Meyers MA, Pollaine SM, Rowley D, Schneider M, Stölken JS, Wark JS, Weber SV, Wolfer WG, Yaakobi B, Zhigilei LV (2004) Materials science under extreme conditions of pressure and strain rate. Metall Mater Trans A 35:2587–2607CrossRefGoogle Scholar
  21. 21.
    Whelchel RL, Mehoke DS, Iyer KA, Sanders TH Jr, Thadani NN (2016) Dynamic yielding and fracture of grade 4 titanium in plate impact experiments. J Appl Phys 119:115901CrossRefGoogle Scholar
  22. 22.
    Kanel GI, Razorenov SV, Fortov VE (1987) Spall resistance of metals over a wide range of shock load amplitudes. Acad Sci USSR-Dokl 294:350Google Scholar
  23. 23.
    Ivanov DS, Zhigilei LV (2003) Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys Rev B 68:064114CrossRefGoogle Scholar
  24. 24.
    Lin Z, Leveugle E, Bringa EM, Zhigilei LV (2010) Molecular dynamics simulation of laser melting of nanocrystalline Au. J Phys Chem C 114:5686–5699CrossRefGoogle Scholar
  25. 25.
    Sedao X, Shugaev MV, Wu C, Douillard T, Esnouf C, Maurice C, Reynaud S, Pigeon F, Garrelie F, Zhigilei LV, Colombier J-P (2016) Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano 10:6995–7007CrossRefGoogle Scholar
  26. 26.
    Mackenchery K, Valisetty R, Stukowski A, Namburu R, Rajendran AM, Dongare AM (2016) Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu. J Appl Phys 119:044301CrossRefGoogle Scholar
  27. 27.
    Srinivasan SG, Baskes MI, Wagner GJ (2007) Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel. J Appl Phys 101:043504CrossRefGoogle Scholar
  28. 28.
    Ravelo R, Germann TC, Guerrero O, An Q, Holian BL (2013) Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular dynamics simulations. Phys Rev B 88:134101CrossRefGoogle Scholar
  29. 29.
    Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW (2009) Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Phys Rev B 80:104108CrossRefGoogle Scholar
  30. 30.
    Dongare AM, Rajendran AM, Lamattina B, Zikry MA, Brenner DW (2010) Atomic scale studies of spall behavior in nanocrystalline Cu. J Appl Phys 108:113518CrossRefGoogle Scholar
  31. 31.
    Dongare AM, Lamattina B, Rajendran AM (2011) Atomic scale studies of spall behavior in single crystal Cu. Procedia Eng 10:3636–3641CrossRefGoogle Scholar
  32. 32.
    Bringa EM, Caro A, Wang Y, Victoria M, McNaney JM, Remington BA, Smith RF, Torralva BR, Van Swygenhoven H (2005) Ultrahigh strength in nanocrystalline materials under shock loading. Science 309:1838–1841CrossRefGoogle Scholar
  33. 33.
    Agarwal G, Dongare AM (2016) Shock wave propagation and spall failure in single crystal Mg at atomic scales. J Appl Phys 119:145901CrossRefGoogle Scholar
  34. 34.
    Dongare AM (2014) Quasi-coarse-grained dynamics: modeling of metallic materials at mesoscales. Phil Mag 94:3877–3897CrossRefGoogle Scholar
  35. 35.
    Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:144113CrossRefGoogle Scholar
  36. 36.
    Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations. Phys Rev B 63:224106CrossRefGoogle Scholar
  37. 37.
    Mackenchery K, Dongare AM (2015) Shock Hugoniot Behavior of single crystal titanium using atomistic simulations. In: Proceedings of 2015 shock compression of condensed matter (accepted, in press)Google Scholar
  38. 38.
    Honeycutt DJ, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963CrossRefGoogle Scholar
  39. 39.
    Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085CrossRefGoogle Scholar
  40. 40.
    Chase MW (1998) NIST-JANAF thermochemical tables. American Institute of Physics, Washington, DCGoogle Scholar
  41. 41.
    Marsh SP (1980) LASL Shock Hugoniot data. University of California Press, Berkeley, p 143Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations