Skip to main content
Log in

Comparison of the quantum efficiency and the responsivity of the single-walled carbon nanotube photodetector with different electrode metals

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, experimental measurements of the photoconductivity in single-walled carbon nanotube (SWCNT) thin films were taken using four different electrodes (Pt, Pd, Au and Ti). Our work shows the impact of the light power intensities and wavelengths on the photoresponse signal. In this context, we have performed the electrical transport characteristics of the device at room temperature under visible continuous wavelength illumination. The photoconductivity measurements, achieved without gating, have shown a strong photoresponse enhancement at the nanotubes/electrode junctions. The obtained response has been generally attributed to the dissociation and subsequent diffusion of photoexcited carriers. We have also proven that a good choice of the metal electrode evidently enhances the photoconductivity of SWCNT-thin film. Due to its high work function and its excellent adhesivity on the thin film of SWCNTs, Au electrodes have shown the most important results than the others metals. The highest quantum efficiency (\( \eta \)) calculated in our case is about 12%, and the responsivity reaches 121.48 mA/W for Au–SWCNT contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ichida M, Hamanaka Y, Kataura H, Achiba Y, Nakamura A (2004) Ultrafast relaxation dynamics of photoexcited carriers in metallic and semiconducting single-walled carbon nanotubes. J Phys Soc Jpn 73(12):3479–3483

    Article  Google Scholar 

  2. Chen H, Xi N, Lai KWC, Fung CKM, Yang R (2010) Development of Infrared detectors using single carbon-nanotube-based field-effect transistors. IEEE Trans Nanotechnol 9(5):582–589

    Article  Google Scholar 

  3. Wu Z (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    Article  Google Scholar 

  4. Behnam A et al (2007) Nanolithographic patterning of transparent, conductive single-walled carbon nanotube films by inductively coupled plasma reactive ion etching. J Vac Sci Technol B Microelectron Nanometer Struct 25(2):348

    Article  Google Scholar 

  5. Behnam A, Noriega L, Choi Y, Wu Z, Rinzler AG, Ural A (2006) Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions. Appl Phys Lett 89(9):93107

    Article  Google Scholar 

  6. Lu S, Panchapakesan B (2006) Nanotube micro-optomechanical actuators. Appl Phys Lett 88(25):253107

    Article  Google Scholar 

  7. Fujiwara A et al (2001) Photoconductivity in semiconducting single-walled carbon nanotubes. Jpn J Appl Phys 40(11B):L1229–L1231

    Article  Google Scholar 

  8. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2007) Exciton photophysics of carbon nanotubes. Annu Rev Phys Chem 58(1):719–747

    Article  Google Scholar 

  9. He X, Léonard F, Kono J (2015) Uncooled carbon nanotube photodetectors. Adv Opt Mater 3(8):989–1011

    Article  Google Scholar 

  10. Zhang T-F et al (2016) Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci Rep 6:38569

    Article  Google Scholar 

  11. Léonard F, Tersoff J (2000) Role of fermi-level pinning in nanotube schottky diodes. Phys Rev Lett 84(20):4693–4696

    Article  Google Scholar 

  12. Odintsov AA (2000) Schottky barriers in carbon nanotube heterojunctions. Phys Rev Lett 85(1):150–153

    Article  Google Scholar 

  13. A. Pavlov, E. Kitsyuk, R. Ryazanov, V. Timoshenkov, and Y. Adamov, “Photodetector based on carbon nanotubes,” 2015, p. 95520 V

  14. Behnam A et al (2008) Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film—GaAs schottky contacts. J Appl Phys 103(11):114315

    Article  Google Scholar 

  15. Behnam A et al (2008) Experimental characterization of single-walled carbon nanotube film-Si Schottky contacts using metal-semiconductor-metal structures. Appl Phys Lett 92(24):243116

    Article  Google Scholar 

  16. Palacios JJ, Tarakeshwar P, Kim DM (2008) Metal contacts in carbon nanotube field-effect transistors: beyond the Schottky barrier paradigm. Phys Rev B 77(11):113403

    Article  Google Scholar 

  17. Liu W, Hierold C, Haluska M (2014) Electrical contacts to individual SWCNTs: a review. Beilstein J Nanotechnol 5:2202–2215

    Article  Google Scholar 

  18. Hasan T, Scardaci V, Tan P, Rozhin AG, Milne WI, Ferrari AC (2007) Stabilization and ‘debundling’ of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J Phys Chem C 111(34):12594–12602

    Article  Google Scholar 

  19. Bondavalli P, Legagneux P, Le BP, Pribat D, Nagle J (2006) Conductive nanotube or nanowire fet transistor network and corresponding electronic device, for detecting analytes. Google Patents, 07 Dec 2006

  20. Troudi M, Bergaoui Y, Bondavalli P, Sghaier N (2016) Time domain analysis of traps generated random telegraph signal in (SWCNT) based sensors. Sens Actuators A Phys 252:185–189

    Article  Google Scholar 

  21. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860

    Article  Google Scholar 

  22. Bondavalli P, Gorintin L, Feugnet G, Lehoucq G, Pribat D (2014) Selective gas detection using CNTFET arrays fabricated using air-brush technique, with different metal as electrodes. Sens Actuators B Chem 202:1290–1297

    Article  Google Scholar 

  23. http://www.sigmaaldrich.com/technical-documents/protocols/materials-science/characterization-and.html

  24. Wei T-Y et al (2010) Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl Phys Lett 96(1):13508

    Article  Google Scholar 

  25. Basori R, Das K, Kumar P, Narayan KS, Raychaudhuri AK (2013) Large photoresponse of Cu: 7, 7, 8, 8-tetracyanoquinodimethane nanowire arrays formed as aligned nanobridges. Appl Phys Lett 102(6):61111

    Article  Google Scholar 

  26. Basori R, Das K, Kumar P, Narayan KS, Raychaudhuri AK (2014) Single CuTCNQ charge transfer complex nanowire as ultra high responsivity photo-detector. Opt Express 22(5):4944–4952

    Article  Google Scholar 

  27. Zhang H, Zhang X, Liu C, Lee S-T, Jie J (2016) High-responsivity, high-detectivity, ultrafast topological insulator Bi 2 Se 3/silicon heterostructure broadband photodetectors. ACS Nano 10(5):5113–5122

    Article  Google Scholar 

  28. Rose A (1963) Concepts in photoconductivity and allied problems. Interscience Publishers, New York

    Google Scholar 

  29. Goykhman I et al (2016) On-chip integrated, silicon-graphene plasmonic schottky photodetector with high responsivity and avalanche photogain. Nano Lett 16(5):3005–3013

    Article  Google Scholar 

  30. Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett 77(19):3015–3017

    Article  Google Scholar 

  31. He Y, Zhang J, Wang Y, Yu Z (2010) Coating geometries of metals on single-walled carbon nanotubes. Appl Phys Lett 96(6):63108

    Article  Google Scholar 

  32. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657

    Article  Google Scholar 

  33. Lim SC et al (2009) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett 95(26):264103

    Article  Google Scholar 

  34. Maiti A, Ricca A (2004) Metal-nanotube interactions—binding energies and wetting properties. Chem Phys Lett 395(1–3):7–11

    Article  Google Scholar 

  35. Manohara HM, Wong EW, Schlecht E, Hunt BD, Siegel PH (2005) Carbon nanotube Schottky diodes using Ti–Schottky and Pt–ohmic contacts for high frequency applications. Nano Lett 5(7):1469–1474

    Article  Google Scholar 

  36. Zeng Q et al (2012) Carbon nanotube arrays based high-performance infrared photodetector. Opt Mater Express 2(6):839

    Article  Google Scholar 

  37. Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87(7):73101

    Article  Google Scholar 

  38. Xie Y, Gong M, Shastry TA, Lohrman J, Hersam MC, Ren S (2013) Broad-spectral-response nanocarbon bulk-heterojunction excitonic photodetectors. Adv Mater 25(25):3433–3437

    Article  Google Scholar 

  39. Lu R, Christianson C, Weintrub B, Wu JZ (2013) High photoresponse in hybrid graphene–carbon nanotube infrared detectors. ACS Appl Mater Interfaces 5(22):11703–11707

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Troudi or N. Sghaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, A., Troudi, M., Bondavalli, P. et al. Comparison of the quantum efficiency and the responsivity of the single-walled carbon nanotube photodetector with different electrode metals. J Mater Sci 52, 10273–10284 (2017). https://doi.org/10.1007/s10853-017-1239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1239-7

Keywords

Navigation