Skip to main content
Log in

Ag-doped SnSe2 as a promising mid-temperature thermoelectric material

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study has investigated the thermoelectric property of a layered metal dichalcogenide SnSe2, which is also non-toxic and earth abundant, especially with a similar composition of SnSe whose single crystals are recently revealed to possess high thermoelectricity. By investigating the electrical and thermal transport properties of Sn1−x Ag x Se2 (x = 0.00, 0.01, 0.03 and 0.05) in this work, it is revealed that the Ag-doped SnSe2 has the potential as a good thermoelectric material used at mid-temperature, benefiting from its relatively low thermal conductivity below 1.0 Wm−1 K−1 and moderate power factor over 350 μWm−1 K−2 at 773 K. A ZT value of ~0.4 can be finally achieved for the composition of Sn0.99Ag0.01Se2 at 773 K, which is an order of magnitude higher than the undoped ones and also larger than the reported metal dichalcogenides compounds of TiS2 and WS2. The present work also reveals that Ag-doped sample shows much better thermal stability over 700 K compared with the undoped one whose measured temperature is only limited to 573 K, even with a few mole doping content of 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Li J-F, Liu WS, Zhao L-D, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Mater 2:152–158

    Article  Google Scholar 

  2. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461

    Article  Google Scholar 

  3. Pei YZ, Shi X, La Londe A, Wang H, Chen LD, Snyder GJ (2011) Convergence of electronic bands for high performance bulk thermoelectric. Nature 473:66–69

    Article  Google Scholar 

  4. Wu D, Zhao L-D, Tong X et al (2014) Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun 5:4515

    Google Scholar 

  5. Tseng F, Li SY, Wu CF, Pan Y, Li LL (2016) Thermoelectric and mechanical properties of ZnSb/SiC nanocomposites. J Mater Sci 51:5271–5280. doi:10.1007/s10853-016-9830-x

    Article  Google Scholar 

  6. Schmidt RD, Case ED, Zhao L-D, Kanatzidis MG (2015) Mechanical properties of low-cost, earth-abundant chalcogenide thermoelectric materials, PbSe and PbS, with additions of 0–4% CdS or ZnS. J Mater Sci 50:1770–1782. doi:10.1007/s10853-014-8740-z

    Article  Google Scholar 

  7. Khan AU, Vlachos N, Kyratsi TH (2013) High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb. Scr Mater 69:606–609

    Article  Google Scholar 

  8. Ning H, Mastrorillo GD, Grasso S, Du B, Mori T, Hu C, Xu Y, Simpson K, Maizza G, Reece MJ (2015) Enhanced thermoelectric performance of porous magnesium tin silicide prepared using pressure-less spark plasma sintering. J Mater Chem A 3:17426–17432

    Article  Google Scholar 

  9. Nolas GS, Morelli DT, Tritt TM (1999) Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu Rev Mater Sci 29:89–116

    Article  Google Scholar 

  10. Rogl G, Setman D, Schafler E, Horky J, Kerbe M, Zehetbauer M, Falmbigl M, Rogl P, Royanian E, Bauer E (2012) High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation. Acta Mater 60:2146–2157

    Article  Google Scholar 

  11. Khan AU, Kobayashi K, Tang D-M, Yamauchi Y, Hasegawa K, Mitome M, Xue YM, Jiang BZ, Tsuchiya K, Golberg D, Bando Y, Mori T (2017) Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy 31:152–159

    Article  Google Scholar 

  12. Zhao L-D, Lo S, Zhang Y et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373

    Article  Google Scholar 

  13. Li YW, Li F, Dong JF et al (2016) Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J Mater Chem C 4:2047–2055

    Article  Google Scholar 

  14. Wan CL, Gu X, Dang F et al (2015) Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat Mater 14:622–627

    Article  Google Scholar 

  15. Li F, Li J-F, Zhao L-D et al (2012) Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ Sci 5:7188–7195

    Article  Google Scholar 

  16. Suh D, Lee D, Kang C, Shon IJ, Kim W, Baik S (2012) Enhanced thermoelectric properties of tungsten disulfide-multiwalled carbon nanotube composites. J Mater Chem 22:21376–21381

    Article  Google Scholar 

  17. Lee C, Hong J, Whangbo M-H, Shim JH (2013) Enhancing the thermoelectric properties of layered transition-metal dichalcogenides 2H-MQ(2) (M = Mo, W; Q = S, Se, Te) by layer mixing: density functional investigation. Chem Mater 25:3745–3752

    Article  Google Scholar 

  18. Guelou G, Vaqueiro P, Prado-Gonjal J, Barbier T, Hebert S, Guilmeau E, Kochelmann W, Powell AV (2016) The impact of charge transfer and structural disorder on the thermoelectric properties of cobalt intercalated TiS2. J Mater Chem C 4:1871–1880

    Article  Google Scholar 

  19. Manou P, Kalomiros JA, Anagnostopoulos AN, Kambas K (1996) Optical properties of SnSe2 single crystals. Mater Res Bull 31:1407–1415

    Article  Google Scholar 

  20. Choi J, Jin J, Jung IG, Kim JM, Kim HJ, Son SU (2011) SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries. Chem Commun 47:5241–5243

    Article  Google Scholar 

  21. Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nano sheets: preparation, properties and applications. Chem Soc Rev 42:1934–1946

    Article  Google Scholar 

  22. Sun B, Ma Z, He C, Wu KC (2015) Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material. Phys Chem Chem Phys 17:29844–29853

    Article  Google Scholar 

  23. Li GP, Ding GQ, Gao GY (2017) Thermoelectric properties of SnSe2 monolayer. J Phys-Condens Mat 29:015001

    Article  Google Scholar 

  24. Kozma AA, Sabov MY, Peresh EY, Barchiy IE, Tsygyka VV (2015) Thermoelectric properties of a eutectic SnSe2–Bi2Se3 alloy. Inorg Mater 51:93–97

    Article  Google Scholar 

  25. Borges ZV, Poffo CM, de Lima JC, de Souza SM, Triches DM, Nogueira TPO, Manzato L, de Biasi RS (2016) Study of structural, optical and thermal properties of nanostructured SnSe2 prepared by mechanical alloying. Mater Chem Phys 169:47–54

    Article  Google Scholar 

  26. Pan Y, Li J-F (2016) Thermoelectric enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater 8:e275

    Article  Google Scholar 

  27. Chen YX, Ge ZH, Yin MJ, Feng D, Huang XQ, Zhao WY, He JQ (2016) Understanding of the extremely low thermal conductivity in high performance polycrystalline SnSe through potassium doping. Adv Funct Mater 26:6936–6945

    Google Scholar 

  28. Zhan B, Liu YC, Tan X, Lan JL, Lin YH, Nan CW (2015) Enhanced thermoelectric properties of Bi2O2Se ceramics by Bi deficiencies. J Am Ceram Soc 98:2465–2469

    Article  Google Scholar 

  29. Ge ZH, Zhang BP, Shang PP, Li J-F (2011) Control of anisotropic electricla transport property of Bi2S3 thermoelectric polycrystals. J Mater Chem 21:9194–9200

    Article  Google Scholar 

  30. Chen CL, Wang H, Chen YY, Daya T, Snyder GJ (2014) Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A 2:11171–11176

    Article  Google Scholar 

  31. Li F, Li J-F, Li JH, Yao FZ (2012) Effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics. Phys Chem Chem Phys 14:12213–12220

    Article  Google Scholar 

  32. Huang ZW, Wu TM, Kong S, Meng Q-L, Zhuang W, Jiang P, Bao XH (2016) Enhancement of anisotropic thermoelectric performance of tungsten disulfide by titanium doping. J Mater Chem A 4:10159–10165

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation (Grant Nos. 51302140 and 11474176), Shenzhen Science and Technology Plan Project (Nos. JCYJ20160422102622085, JCYJ20140417115840249, JCYJ20150827165038323) as well as the Natural Science Foundation of SZU (No. 2016016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Feng Li or Jingting Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zheng, Z., Li, Y. et al. Ag-doped SnSe2 as a promising mid-temperature thermoelectric material. J Mater Sci 52, 10506–10516 (2017). https://doi.org/10.1007/s10853-017-1238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1238-8

Keywords

Navigation