Skip to main content

Ionic liquid-based polymeric microreactors and their applicability

Abstract

This work examines the applicability of encapsulated 1-methyl-3-butylimidazolium hexafluorophosphate within a polyurea shell (BMIm[PF6]@polyurea) to act as microreactors by dissolving platinum acetylacetonate or cinchonine in the ionic liquid phase pre-emulsification. Their applicability was tested in hydrosilylation and Michael addition reactions, respectively. The capsules crack within the first catalytic cycle indicating a fragile shell is formed. In addition, the development of particulated BMIm[PF6] within polyurethane is described. These BMIm[PF6]@polyurethane capsules were characterized and analyzed using scanning electron microscopy, X-ray diffraction, solid-state NMR, infrared and thermal gravimetric analysis. Finally, their ability to act as microreactors in the Michael addition reaction was tested. The capsules morphology does not undergo any changes after the reaction.

This is a preview of subscription content, access via your institution.

Figure 1
Scheme 1
Scheme 2
Figure 2
Scheme 3
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

References

  1. 1

    Can L, Yan L (eds) (2014) Bridging heterogeneous and homogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  2. 2

    Leadbeater NE, Marco M (2002) Preparation of polymer-supported ligands and metal complexes for use in catalysis. Chem Rev 102:3217–3274

    Article  Google Scholar 

  3. 3

    Lu J, Toy PH (2009) Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem Rev 109:815–838

    Article  Google Scholar 

  4. 4

    Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT (2007) Greener approaches to organic synthesis using microreactor technology. Chem Rev 107:2300–2318

    Article  Google Scholar 

  5. 5

    McNamara CA, Dixon MJ, Bradley M (2002) Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem Rev 102:3275–3300

    Article  Google Scholar 

  6. 6

    Zhao XS, Bao XY, Guo WP, Lee FY (2006) Immobilizing catalysts on porous materials. Mater Today 9:32–39

    Article  Google Scholar 

  7. 7

    Kirschning A (ed) (2004) Immobilized catalysts: solid phase, immobilization and applications, vol 242. Springer, Heidelberg, Berlin

    Google Scholar 

  8. 8

    Kobayashi S, Nagayama SA (1998) Microencapsulated Lewis acid. A new type of polymer-supported Lewis acid catalyst of wide utility in organic synthesis. J Am Chem Soc 120:2985–2986

    Article  Google Scholar 

  9. 9

    Akiyama R, Kobayashi S (2009) Microencapsulated and related catalysts for organic chemistry and organic synthesis. Chem Rev 109:594–642

    Article  Google Scholar 

  10. 10

    Lensen D, Vriezema DM, van Hest JCM (2008) Polymeric microcapsules for synthetic applications. Macromol Biosci 8:991–1005

    Article  Google Scholar 

  11. 11

    Longstreet AR, McQuade DT (2013) Organic reaction systems: using microcapsules and microreactors to perform chemical synthesis. Acc Chem Res 46:327–338

    Article  Google Scholar 

  12. 12

    Mason BP, Bogdan AR, Goswami A, McQuade DT (2007) A general approach to creating soluble catalytic polymers heterogenized in microcapsules. Org Lett 9:3449–3451

    Article  Google Scholar 

  13. 13

    Pitts MR (2008) Safer, faster and cleaner reactions using encapsulated metal catalysts and microwave heating performance enhancement of palladium, platinum and osmium catalysts. Platin Met Rev 52:64–70

    Article  Google Scholar 

  14. 14

    Polenz I, Weitz DA, Baret JC (2015) Polyurea microcapsules in microfluidics: surfactant control of soft membranes. Langmuir 31:1127–1134

    Article  Google Scholar 

  15. 15

    Price KE, Mason BP, Bogdan AR, Broadwater SJ, Steinbacher JL, McQuade DT (2006) Microencapsulated linear polymers: “soluble” heterogeneous catalysts. J Am Chem Soc 128:10376–10377

    Article  Google Scholar 

  16. 16

    Stadler B, Price AD, Chandrawati R, Hosta-Rigau L, Zelikin AN, Caruso F (2009) Polymer hydrogel capsules: en route toward synthetic cellular systems. Nanoscale 1:68–73

    Article  Google Scholar 

  17. 17

    Wang X, Feng J, Bai Y, Zhang Q, Yin Y (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116:10983–11060

    Article  Google Scholar 

  18. 18

    Risangud N, Congdon RT, Keddie JD, Wilson P, Kempe K, Haddleton MD (2016) Polyurea microcapsules from isocyanatoethyl methacrylate copolymers. J Polym Sci A Polym Chem 54:2698–2705

    Article  Google Scholar 

  19. 19

    Zhang S, Zhang J, Zhang Y, Deng Y (2016) Nanoconfined Ionic liquids. Chem Rev. doi:10.1021/acs.chemrev.6b00509

    Google Scholar 

  20. 20

    Shen J, Xin X, Liu T, Wang S, Yang Y, Luan X, Xu G, Yuan S (2016) Ionic self-assembly of giant vesicles as a smart microcarrier and microreactor. Langmuir 32:9548–9556

    Article  Google Scholar 

  21. 21

    Ramarao C, Ley SV, Smith SC, Shirley IM, DeAlmeida N (2002) Encapsulation of palladium in polyurea microcapsules. Chem Commun. doi:10.1039/B200674J

    Google Scholar 

  22. 22

    Ley SV, Ramarao C, Gordon RS, Holmes AB, Morrison AJ, McConvey IF, Shirley IM, Smith SC, Smith MD (2002) Polyurea-encapsulated palladium(II) acetate: a robust and recyclable catalyst for use in conventional and supercritical media. Chem Commun. doi:10.1039/B200677B

    Google Scholar 

  23. 23

    Baxendale IR, Griffiths-Jones CM, Ley SV, Tranmer GK (2006) Microwave-assisted Suzuki coupling reactions with an encapsulated palladium catalyst for batch and continuous-flow transformations. Chem Eur J 12:4407–4416

    Article  Google Scholar 

  24. 24

    Bremeyer N, Ley SV, Ramarao C, Shirley IM, Smith SC (2002) Palladium acetate in polyurea microcapsules: a recoverable and reusable catalyst for hydrogenations. Synlett. doi:10.1055/s-2002-34862

    Google Scholar 

  25. 25

    Ley SV, Ramarao C, Lee AL, Ostergaard N, Smith SC, Shirley IM (2003) Microencapsulation of osmium tetroxide in polyurea. Org Lett 5:185–187

    Article  Google Scholar 

  26. 26

    Yu JQ, Wu HC, Ramarao C, Spencer JB, Ley SV (2003) Transfer hydrogenation using recyclable polyurea-encapsulated palladium: efficient and chemoselective reduction of aryl ketones. Chem Commun. doi:10.1039/B300074P

    Google Scholar 

  27. 27

    Broadwater SJ, McQuade DT (2006) Investigating PdEnCat catalysis. J Org Chem 71:2131–2134

    Article  Google Scholar 

  28. 28

    Richardson JM, Jones CW (2006) Poly(4-vinylpyridine) and quadrapure TU as selective poisons for soluble catalytic species in palladium-catalyzed coupling reactions–application to leaching from polymer-entrapped palladium. Adv Synth Catal 348:1207–1216

    Article  Google Scholar 

  29. 29

    Toubiana J, Chidambaram M, Santo A, Sasson Y (2008) PdAlqEn: a novel upgraded version of the PdEnCat (TM) family of polyurea encapsulated catalysts. Adv Synth Catal 350:1230–1234

    Article  Google Scholar 

  30. 30

    Weiss E, Gertopski D, Gupta MK, Abu-Reziq R (2015) Encapsulation of ionic liquid BMIm[PF6] within polyurea microspheres. React Funct Polym 96:32–38

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by German-Israeli Foundation for Scientific Research and Development (Grant No. 2274-2193.5/2010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raed Abu-Reziq.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weiss, E., Abu-Reziq, R. Ionic liquid-based polymeric microreactors and their applicability. J Mater Sci 52, 10637–10647 (2017). https://doi.org/10.1007/s10853-017-1236-x

Download citation

Keywords

  • Microcapsules
  • Cinchonine
  • Michael Addition Reaction
  • Ionic Liquids (IL)
  • Platinum Acetylacetonate