Advertisement

Journal of Materials Science

, Volume 52, Issue 17, pp 10637–10647 | Cite as

Ionic liquid-based polymeric microreactors and their applicability

  • Ester Weiss
  • Raed Abu-ReziqEmail author
Polymers

Abstract

This work examines the applicability of encapsulated 1-methyl-3-butylimidazolium hexafluorophosphate within a polyurea shell (BMIm[PF6]@polyurea) to act as microreactors by dissolving platinum acetylacetonate or cinchonine in the ionic liquid phase pre-emulsification. Their applicability was tested in hydrosilylation and Michael addition reactions, respectively. The capsules crack within the first catalytic cycle indicating a fragile shell is formed. In addition, the development of particulated BMIm[PF6] within polyurethane is described. These BMIm[PF6]@polyurethane capsules were characterized and analyzed using scanning electron microscopy, X-ray diffraction, solid-state NMR, infrared and thermal gravimetric analysis. Finally, their ability to act as microreactors in the Michael addition reaction was tested. The capsules morphology does not undergo any changes after the reaction.

Notes

Acknowledgements

Funding was provided by German-Israeli Foundation for Scientific Research and Development (Grant No. 2274-2193.5/2010).

References

  1. 1.
    Can L, Yan L (eds) (2014) Bridging heterogeneous and homogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Leadbeater NE, Marco M (2002) Preparation of polymer-supported ligands and metal complexes for use in catalysis. Chem Rev 102:3217–3274CrossRefGoogle Scholar
  3. 3.
    Lu J, Toy PH (2009) Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem Rev 109:815–838CrossRefGoogle Scholar
  4. 4.
    Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT (2007) Greener approaches to organic synthesis using microreactor technology. Chem Rev 107:2300–2318CrossRefGoogle Scholar
  5. 5.
    McNamara CA, Dixon MJ, Bradley M (2002) Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem Rev 102:3275–3300CrossRefGoogle Scholar
  6. 6.
    Zhao XS, Bao XY, Guo WP, Lee FY (2006) Immobilizing catalysts on porous materials. Mater Today 9:32–39CrossRefGoogle Scholar
  7. 7.
    Kirschning A (ed) (2004) Immobilized catalysts: solid phase, immobilization and applications, vol 242. Springer, Heidelberg, BerlinGoogle Scholar
  8. 8.
    Kobayashi S, Nagayama SA (1998) Microencapsulated Lewis acid. A new type of polymer-supported Lewis acid catalyst of wide utility in organic synthesis. J Am Chem Soc 120:2985–2986CrossRefGoogle Scholar
  9. 9.
    Akiyama R, Kobayashi S (2009) Microencapsulated and related catalysts for organic chemistry and organic synthesis. Chem Rev 109:594–642CrossRefGoogle Scholar
  10. 10.
    Lensen D, Vriezema DM, van Hest JCM (2008) Polymeric microcapsules for synthetic applications. Macromol Biosci 8:991–1005CrossRefGoogle Scholar
  11. 11.
    Longstreet AR, McQuade DT (2013) Organic reaction systems: using microcapsules and microreactors to perform chemical synthesis. Acc Chem Res 46:327–338CrossRefGoogle Scholar
  12. 12.
    Mason BP, Bogdan AR, Goswami A, McQuade DT (2007) A general approach to creating soluble catalytic polymers heterogenized in microcapsules. Org Lett 9:3449–3451CrossRefGoogle Scholar
  13. 13.
    Pitts MR (2008) Safer, faster and cleaner reactions using encapsulated metal catalysts and microwave heating performance enhancement of palladium, platinum and osmium catalysts. Platin Met Rev 52:64–70CrossRefGoogle Scholar
  14. 14.
    Polenz I, Weitz DA, Baret JC (2015) Polyurea microcapsules in microfluidics: surfactant control of soft membranes. Langmuir 31:1127–1134CrossRefGoogle Scholar
  15. 15.
    Price KE, Mason BP, Bogdan AR, Broadwater SJ, Steinbacher JL, McQuade DT (2006) Microencapsulated linear polymers: “soluble” heterogeneous catalysts. J Am Chem Soc 128:10376–10377CrossRefGoogle Scholar
  16. 16.
    Stadler B, Price AD, Chandrawati R, Hosta-Rigau L, Zelikin AN, Caruso F (2009) Polymer hydrogel capsules: en route toward synthetic cellular systems. Nanoscale 1:68–73CrossRefGoogle Scholar
  17. 17.
    Wang X, Feng J, Bai Y, Zhang Q, Yin Y (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116:10983–11060CrossRefGoogle Scholar
  18. 18.
    Risangud N, Congdon RT, Keddie JD, Wilson P, Kempe K, Haddleton MD (2016) Polyurea microcapsules from isocyanatoethyl methacrylate copolymers. J Polym Sci A Polym Chem 54:2698–2705CrossRefGoogle Scholar
  19. 19.
    Zhang S, Zhang J, Zhang Y, Deng Y (2016) Nanoconfined Ionic liquids. Chem Rev. doi: 10.1021/acs.chemrev.6b00509 Google Scholar
  20. 20.
    Shen J, Xin X, Liu T, Wang S, Yang Y, Luan X, Xu G, Yuan S (2016) Ionic self-assembly of giant vesicles as a smart microcarrier and microreactor. Langmuir 32:9548–9556CrossRefGoogle Scholar
  21. 21.
    Ramarao C, Ley SV, Smith SC, Shirley IM, DeAlmeida N (2002) Encapsulation of palladium in polyurea microcapsules. Chem Commun. doi: 10.1039/B200674J Google Scholar
  22. 22.
    Ley SV, Ramarao C, Gordon RS, Holmes AB, Morrison AJ, McConvey IF, Shirley IM, Smith SC, Smith MD (2002) Polyurea-encapsulated palladium(II) acetate: a robust and recyclable catalyst for use in conventional and supercritical media. Chem Commun. doi: 10.1039/B200677B Google Scholar
  23. 23.
    Baxendale IR, Griffiths-Jones CM, Ley SV, Tranmer GK (2006) Microwave-assisted Suzuki coupling reactions with an encapsulated palladium catalyst for batch and continuous-flow transformations. Chem Eur J 12:4407–4416CrossRefGoogle Scholar
  24. 24.
    Bremeyer N, Ley SV, Ramarao C, Shirley IM, Smith SC (2002) Palladium acetate in polyurea microcapsules: a recoverable and reusable catalyst for hydrogenations. Synlett. doi: 10.1055/s-2002-34862 Google Scholar
  25. 25.
    Ley SV, Ramarao C, Lee AL, Ostergaard N, Smith SC, Shirley IM (2003) Microencapsulation of osmium tetroxide in polyurea. Org Lett 5:185–187CrossRefGoogle Scholar
  26. 26.
    Yu JQ, Wu HC, Ramarao C, Spencer JB, Ley SV (2003) Transfer hydrogenation using recyclable polyurea-encapsulated palladium: efficient and chemoselective reduction of aryl ketones. Chem Commun. doi: 10.1039/B300074P Google Scholar
  27. 27.
    Broadwater SJ, McQuade DT (2006) Investigating PdEnCat catalysis. J Org Chem 71:2131–2134CrossRefGoogle Scholar
  28. 28.
    Richardson JM, Jones CW (2006) Poly(4-vinylpyridine) and quadrapure TU as selective poisons for soluble catalytic species in palladium-catalyzed coupling reactions–application to leaching from polymer-entrapped palladium. Adv Synth Catal 348:1207–1216CrossRefGoogle Scholar
  29. 29.
    Toubiana J, Chidambaram M, Santo A, Sasson Y (2008) PdAlqEn: a novel upgraded version of the PdEnCat (TM) family of polyurea encapsulated catalysts. Adv Synth Catal 350:1230–1234CrossRefGoogle Scholar
  30. 30.
    Weiss E, Gertopski D, Gupta MK, Abu-Reziq R (2015) Encapsulation of ionic liquid BMIm[PF6] within polyurea microspheres. React Funct Polym 96:32–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Casali Center of Applied Chemistry and the Center for Nanoscience and Nanotechnology, Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations