Skip to main content
Log in

Sulfidation of 2D transition metals (Mo, W, Re, Nb, Ta): thermodynamics, processing, and characterization

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sulfidation of selected transition metal thin films (Mo, W, Re, Nb, Ta) was combined with thermodynamic calculations to study the synthesis of transition metal dichalcogenides (TMDCs) and understand variations among the metals as well as processing atmosphere. Metal seed layers were prepared by DC magnetron sputtering and sulfidized using sulfur vapor and H2S. Surface chemistry, structure, and morphology of the films were investigated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy (AFM), respectively. XPS analysis revealed that after treatment with sulfur vapor (p (S2) = 1–10 Torr), Mo, W, and Re films were transformed into MoS2, WS2, and ReS2, respectively. However, Nb and Ta films changed little, and Nb2O5 and Ta2O5 remained the predominant components. Alternatively, conversion of Nb and Ta films to NbS2 and TaS2 was feasible under H2S. Raman spectroscopy also revealed improved crystallinity for Mo, W, and Re sulfidized under H2S. Isobaric and isothermal stability diagrams were calculated to identify feasible processing conditions (sulfur partial pressure and temperatures) for the sulfidation of all of the metals, and our findings were in good agreement with the XPS and Raman results. It was found that for Mo, W, and Re a p (S2) = 10−5 bar is sufficient for the metals to be converted to sulfide phases at 750 °C. On the other hand, due to very high stability of Nb2O5 and Ta2O5, even at very low p (O2), a sulfur partial pressure of 103–104 bar is required to make NbS2 and TaS2, respectively. Nevertheless, thermodynamic calculations confirmed that Nb and Ta could be transformed to NbS2 and TaS2 under 760 Torr H2S. AFM analysis revealed very smooth films for MoS2, WS2, and NbS2 films, but dewetting of TaS2, and ribbons for ReS2. These results provide guidance for designing new processes for synthesizing 2D TMDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Frindt RF (1966) Single crystals of MoS2 several molecular layers thick. J Appl Phys 37:1928–1932. doi:10.1063/1.1708627

    Article  Google Scholar 

  2. Joensen P, Frindt RF, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21:457–461. doi:10.1016/0025-5408(86)90011-5

    Article  Google Scholar 

  3. Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335. doi:10.1080/00018736900101307

    Article  Google Scholar 

  4. Ugeda MM, Bradley AJ, Zhang Y et al (2015) Characterization of collective ground states in single-layer NbSe2. Nat Phys 12:92–97. doi:10.1038/nphys3527

    Article  Google Scholar 

  5. Sipos B, Kusmartseva AF, Akrap A et al (2008) From Mott state to superconductivity in 1T-TaS2. Nat Mater 7:960–965. doi:10.1038/nmat2318

    Article  Google Scholar 

  6. Baugher BWH, Churchill HOH, Yang Y, Jarillo-Herrero P (2014) Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat Nanotechnol 9:262–267. doi:10.1038/nnano.2014.25

    Article  Google Scholar 

  7. Fujita T, Ito Y, Tan Y et al (2014) Chemically exfoliated ReS2 nanosheets. Nanoscale 6:12458–12462. doi:10.1039/c4nr03740e

    Article  Google Scholar 

  8. Jing Y, Zhou Z, Cabrera CR, Chen Z (2013) Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. J Phys Chem C 117:25409–25413. doi:10.1021/jp410969u

    Article  Google Scholar 

  9. Tongay S, Sahin H, Ko C et al (2014) Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat Commun 5:3252. doi:10.1038/ncomms4252

    Article  Google Scholar 

  10. Enomoto H, Kawano T, Kawaguchi M et al (2004) Van der Waals growth of thin TaS2 on layered substrates by chemical vapor transport technique. Jpn J Appl Phys 43:L123–L126. doi:10.1143/JJAP.43.L123

    Article  Google Scholar 

  11. Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150. doi:10.1038/nnano.2010.279

    Article  Google Scholar 

  12. Nicolosi V, Chhowalla M, Kanatzidis MG et al (2013) Liquid exfoliation of layered materials. Science 340:1226419. doi:10.1126/science.1226419

    Article  Google Scholar 

  13. Kong D, Wang H, Cha JJ et al (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347. doi:10.1021/nl400258t

    Article  Google Scholar 

  14. Zhan Y, Liu Z, Najmaei S et al (2012) Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8:966–971. doi:10.1002/smll.201102654

    Article  Google Scholar 

  15. Kang K, Xie S, Huang L et al (2015) High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520:656–660. doi:10.1038/nature14417

    Article  Google Scholar 

  16. Eichfeld SM, Hossain L, Lin Y-C et al (2015) Highly scalable, atomically thin WSe2 grown via metal–organic chemical vapor deposition. ACS Nano 9:2080–2087. doi:10.1021/nn5073286

    Article  Google Scholar 

  17. Jin Z, Shin S, Kwon DH et al (2014) Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate. Nanoscale 6:14453–14458. doi:10.1039/c4nr04816d

    Article  Google Scholar 

  18. Gaur APS, Sahoo S, Ahmadi M et al (2013) Optical and vibrational studies of partially edge-terminated vertically aligned Nanocrystalline MoS2 thin films. J Phys Chem C 117:26262–26268. doi:10.1021/jp407377g

    Article  Google Scholar 

  19. Elías AL, Perea-López N, Castro-Beltrán A et al (2013) Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 7:5235–5242. doi:10.1021/nn400971k

    Article  Google Scholar 

  20. Jung Y, Shen J, Liu Y et al (2014) Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. Nano Lett 14:6842–6849. doi:10.1021/nl502570f

    Article  Google Scholar 

  21. Woods JM, Jung Y, Xie Y et al (2016) One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 10:2004–2009. doi:10.1021/acsnano.5b06126

    Article  Google Scholar 

  22. Crist BV (2000) Handbook of monochromatic XPS spectra by B. John Wiley and Sons Ltd., England

    Google Scholar 

  23. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray photoelectron spectroscopy (XPS) database, version 4.1

  24. Li H, Zhang Q, Yap CCR et al (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22:1385–1390. doi:10.1002/adfm.201102111

    Article  Google Scholar 

  25. Berkdemir A, Gutiérrez HR, Botello-Méndez AR et al (2013) Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci Rep 3:1–8. doi:10.1038/srep01755

    Article  Google Scholar 

  26. Lazzari R, Jupille J (2005) Wetting and interfacial chemistry of metallic films on the hydroxylated α-Al2O3 (0001) surface. Phys Rev B Condens Matter Mater Phys 71:1–13. doi:10.1103/PhysRevB.71.045409

    Article  Google Scholar 

  27. Cazzanelli E, Castriota M, Marino S et al (2009) Characterization of rhenium oxide films and their application to liquid crystal cells. J Appl Phys 105:114904. doi:10.1063/1.3138812

    Article  Google Scholar 

  28. Oh S, Hite DA, Cicak K et al (2006) Epitaxial growth of rhenium with sputtering. Thin Solid Films 496:389–394. doi:10.1016/j.tsf.2005.09.091

    Article  Google Scholar 

  29. He X, Liu F, Hu P et al (2015) Chemical vapor deposition of high-quality and atomically layered ReS2. Small 11:5423–5429. doi:10.1002/smll.201501488

    Article  Google Scholar 

  30. Villars P, Okamoto H, Cenzual K (2006) ASM alloy phase diagrams database. http://www1.asminternational.org/AsmEnterprise/APD. 990389

  31. Villars P, Calvert LD (1986) Pearson’s handbook of crystallographic data for intermetallic phases. Am Soc Met. doi:10.1002/crat.2170221117

    Google Scholar 

  32. Mills KC (1974) Thermodynamic data for inorganic sulphides. Selenides and Tellurides. Butterworth & Co Ltd, London

    Google Scholar 

  33. Sidgwick NV (1950) The chemical elements and their compounds. Clarendon Press, Oxford, Glasgow

    Google Scholar 

  34. Wildervanck JC, Jellinek F (1971) The dichalcogenides of technetium and rhenium. J Less-Common Met 24:73–81. doi:10.1016/0022-5088(71)90168-8

    Article  Google Scholar 

  35. Hodouin D (1975) The standard free energy of formation of nonstoichiometric niobium sulfides. Metall Trans B 6:223–228. doi:10.1007/BF02913563

    Article  Google Scholar 

  36. Jellinek F, Brauer G, Muller H (1960) Molybdenum and niobium sulphides. Nature 185:376–377. doi:10.1038/185376a0

    Article  Google Scholar 

  37. Fisher WG, Sienko MJ (1980) Stoichiometry, structure, and physical properties of niobium disulfide. Inorg Chem 19:39–43. doi:10.1021/ic50203a009

    Article  Google Scholar 

  38. Dash JK, Chen L, Dinolfo PH et al (2015) A method toward fabricating semiconducting 3R-NbS2 ultrathin films. J Phys Chem C 119:19763–19771. doi:10.1021/acs.jpcc.5b04057

    Article  Google Scholar 

  39. Jellinek F (1962) The system tantalum-sulfur. J Less Common Met 4:9–15. doi:10.1016/0022-5088(62)90053-X

    Article  Google Scholar 

  40. Dyer C, Hendra PJ, Forsling W, Ranheimer M (1993) Surface hydration of aqueous γ-Al2O3 studied by Fourier transform Raman and infrared spectroscopy—I. Initial results. Spectrochim Acta Part A Mol Spectrosc 49:691–705. doi:10.1016/0584-8539(93)80092-O

    Article  Google Scholar 

  41. Nakashima S, Tokuda Y, Mitsuishi A et al (1982) Raman scattering from 2H-NbS2 and intercalated NbS2. Solid State Commun 42:601–604. doi:10.1016/0038-1098(82)90617-2

    Article  Google Scholar 

  42. Zhao S, Hotta T, Koretsune T et al (2016) Two-dimensional metallic NbS2: growth, optical identification and transport properties. 2D Mater 3:25027. doi:10.1088/2053-1583/3/2/025027

    Article  Google Scholar 

  43. Hirata T, Ohuchi F (2001) Temperature dependence of the Raman spectra of 1T-TaS2. Solid State Commun 117:361–364. doi:10.1016/S0038-1098(00)00468-3

    Article  Google Scholar 

  44. Duffey JR, Kirby RD, Coleman RV (1976) Raman scattering from 1T-TaS2. Solid State Commun 20:617–621. doi:10.1016/0038-1098(76)91073-5

    Article  Google Scholar 

  45. Sugai S, Murase K, Uchida S, Tanaka S (1981) Studies of lattice dynamics in 2H-TaS2 by Raman scattering. Solid State Commun 40:399–401. doi:10.1016/0038-1098(81)90847-4

    Article  Google Scholar 

  46. Luican-Mayer A, Guest JR, Hla S-W (2015) Suppression of charge density wave phases in ultrathin 1T-TaS2. In: arXiv:1506.04102. http://arxiv.org/abs/1506.04102. Accessed 29 Oct 2016

Download references

Acknowledgements

The authors acknowledge the support by the National Science Foundation (NSF) through EFRI-1433378.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamed Simchi or Suzanne E. Mohney.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simchi, H., Walter, T.N., Choudhury, T.H. et al. Sulfidation of 2D transition metals (Mo, W, Re, Nb, Ta): thermodynamics, processing, and characterization. J Mater Sci 52, 10127–10139 (2017). https://doi.org/10.1007/s10853-017-1228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1228-x

Keywords

Navigation