Skip to main content

Effect of TEMPO oxidation of flax fibers on the grafting efficiency of silane coupling agents

Abstract

The main drawbacks of flax fibers have been attributed to poor compatibility with polymer matrices as well as relatively high water absorption. The aforementioned properties are mainly due to the presence of hydrophilic hydroxyl functional groups on the backbone of the flax fibers. This study aims to convert primary alcoholic (OH) groups on the surface of flax fiber to carboxyl groups by using TEMPO oxidation in order to facilitate the silane treatment process. Subsequently, carboxyl groups can more easily interact with silane coupling agents. The surface functionality of as-received and treated fibers was characterized using Fourier transform infrared and X-ray photoelectron spectroscopy. Dynamic contact angle tensiometer was used to compare wettability of the oxidized and non-oxidized fibers after the silane treatment. The interaction between flax fiber and polymer was characterized using scanning electron microscopy (SEM). The results indicated that the TEMPO oxidation significantly improved the bonding efficiency of the silane coupling agents on the fiber surface. Thus, the compatibility between the flax fibers and the epoxy resin was improved. In addition, the water absorption of the modified fibers was remarkably reduced, while the contact angle of the flax fibers was increased.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Ticoalu A, Aravinthan T, Cardona F (2010) A review of current development in natural fiber composites for structural and infrastructure applications. In: Proceedings of the southern region engineering conference (SREC 2010), Australia

  2. 2

    George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485

    Article  Google Scholar 

  3. 3

    Stamboulis A, Baillie CA, Peijs T (2001) Effect of environmental conditions on mechanical and physical properties of flax fibers. Compos Part A 32:1105–1115

    Article  Google Scholar 

  4. 4

    Wambua P, Ivens J, Verpoest I (2003) Natural fibers: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  Google Scholar 

  5. 5

    Angelov I, Weidmer S, Evstatiev M, Friedrich K, Menning G (2007) Pultrusion of flax/polypropylene yarn. Compos Part A 38:1431–1438

    Article  Google Scholar 

  6. 6

    Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mat Eng 295:975–989

    Article  Google Scholar 

  7. 7

    Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) A review of bast fibres and their composites Part 2—composites. Compos Part A 41:1336–1344

    Article  Google Scholar 

  8. 8

    Rajan R, Joseph K, Skrifvars M, Jarvela P (2012) Evaluating the influence of chemical modification on flax yarn. In: 15th European conference on composite materials (ECCM15), Venice, Italy, 24–28 June 2012

  9. 9

    Bisanda ETN, Ansell MP (1991) The effect of silane treatment on the mechanical and physical properties of sisal–epoxy composites. Compos Sci Technol 41:165–178

    Article  Google Scholar 

  10. 10

    Singh B, Gupta M, Verma A (1996) Influence of fiber surface treatment on the properties of sisal–polyester composites. Polym Compos 17:910–918

    Article  Google Scholar 

  11. 11

    Ragoubi M, Bienaimé D, Molina S, George B, Merlin A (2010) Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Ind Crops Prod 31:344–349

    Article  Google Scholar 

  12. 12

    Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites—a review. J Thermoplast Compos Mater 22:2135–2162

    Article  Google Scholar 

  13. 13

    Sakata I, Morita M, Tsuruta N, Morita K (1993) Activation of wood surface by corona treatment to improve adhesive bonding. J Appl Polym Sci 49:1251–1258

    Article  Google Scholar 

  14. 14

    Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336

    Article  Google Scholar 

  15. 15

    Foruzanmehr MR, Vuillaume PY, Robert M, Elkoun S (2015) The effect of grafting a nano-TiO2 thin film on physical and mechanical properties of cellulosic natural fibers. Mater Des 85:671–678

    Article  Google Scholar 

  16. 16

    Li R, Ye L, Mai YW (1997) Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Compos Part A Appl Sci 28:73–86

    Article  Google Scholar 

  17. 17

    Sun D (2005) Investigating the plasma modification of natural fiber fabrics-the effect on fabric surface and mechanical properties. Text Res J 75:639–644

    Article  Google Scholar 

  18. 18

    Xie Y, Krause A, Militz H, Steuernagel L, Mai C (2013) Effects of hydrophobation treatments of wood particles with an amino alkylsiloxane co-oligomer on properties of the ensuing polypropylene composites. Compos Part A 44:32–39

    Article  Google Scholar 

  19. 19

    Daneault C, Kokta BV, Maldas D (1988) Grafting of vinyl monomers onto wood fibers initiated by peroxidation. Polym Bull 20:137–141

    Article  Google Scholar 

  20. 20

    Hong CK, Kim N, Kang SL, Nah C, Lee YS, Cho BH, Ahn JH (2008) Mechanical properties of maleic anhydride treated jute fibre/polypropylene composites. Plast Rubber Compos 37:325–330

    Article  Google Scholar 

  21. 21

    Hill CAS (2006) Chemical modification of wood (I): acetic anhydride modification. In: Wood modification: chemical, thermal and other processes. John Wiley & Sons Ltd., New York, pp 45–76

    Chapter  Google Scholar 

  22. 22

    Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 24:41–75

    Article  Google Scholar 

  23. 23

    Lu JZ, Wu Q, McNaabb HS (2000) Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci 32:88–104

    Google Scholar 

  24. 24

    Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A 41:806–819

    Article  Google Scholar 

  25. 25

    Rider AN, Arnott DR (2000) Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. Int J Adhes Adhes 20:209–220

    Article  Google Scholar 

  26. 26

    Wu HF, Dwight DW, Huff NT (1997) Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites. Compos Sci Technol 57:975–983

    Article  Google Scholar 

  27. 27

    Ali A, Shaker K, Nawab Y, Jabbar M, Hussain T, Militky J, Baheti V (2016) Hydrophobic treatment of natural fibers and their composites: a review. J Ind Text. doi:10.1177/1528083716654468

    Google Scholar 

  28. 28

    Donath S, Militz H, Mai C (2006) Creating water-repellent effects on wood by treatment with silanes. Holzforschung 60:40–46

    Google Scholar 

  29. 29

    Plueddemann EP (1991) Silane coupling agents, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  30. 30

    Doan TTL (2006) Investigation on jute fibres and their composites based on polypropylene and epoxy matrices. PhD thesis, Technischen Universität Dresden, Germany

  31. 31

    Owen MJ (2013) 3-Methacryloxypropyltrimethoxysilane. In: Progress in silicones and silicone-modified materials, ACS symposium series 1154. American Chemical Society, Washington, DC, pp 47–56

  32. 32

    Kurata S, Yamazaki N (1993) Improvement of water-resistance by addition of hydrophobic silanes to 3-methacryloxypropyltrimethoxysilane coupling agents on tensile bond strength of poly(methylmethacrylate) to ceramics. FIBER 49:143–147

    Article  Google Scholar 

  33. 33

    Krasnoslobodtsev AV, Smirnov SN (2002) Effect of water on silanization of silica by trimethoxysilanes. Langmuir 18:3181–3184

    Article  Google Scholar 

  34. 34

    Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Coll Interface Sci 273:505–511

    Article  Google Scholar 

  35. 35

    Matuana LM, Balatinecz JJ, Park CB, Sodhi RNS (1999) X-ray photoelectron spectroscopy study of silane-treated newsprint-fibers. Wood Sci Technol 33:259–270

    Article  Google Scholar 

  36. 36

    Salon MCB, Gerbaud G, Abdelmouleh M, Bruzzese C, Boufi S, Belgacem MN (2007) Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn Reson Chem 45:473–483

    Article  Google Scholar 

  37. 37

    Abdelmouleh M, Boufi S, Ben Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208

    Article  Google Scholar 

  38. 38

    Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos Part B 30:309–320

    Article  Google Scholar 

  39. 39

    Deruiter J (2005). http://www.auburn.edu/~deruija/pda1_acids2.Pdf. Accessed May 2016

  40. 40

    Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloid Surface A 289:219–225

    Article  Google Scholar 

  41. 41

    Isogai T, Saito T, Isogai A (2010) TEMPO electro mediated oxidation of some polysaccharides including regenerated cellulose fiber. Biomacromolecules 11:1593–1599

    Article  Google Scholar 

  42. 42

    Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr Polym 61:414–419

    Article  Google Scholar 

  43. 43

    Foruzanmehr MR, Boulos L, Vuillaume PY, Elkoun S, Robert M (2017) The effect of cellulose oxidation on interfacial bonding of nano-TiO2 coating to flax fibers. Cellulose 29:1529–1542

    Article  Google Scholar 

  44. 44

    Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  Google Scholar 

  45. 45

    Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580

    Article  Google Scholar 

  46. 46

    Benkaddour A, Journoux-Lapp C, Jradi K, Robert S, Daneault C (2014) Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: amidation and esterification process. J Mater Sci 49:2832–2843. doi:10.1007/s10853-013-7989-y

    Article  Google Scholar 

  47. 47

    Foruzanmehr MR, Vuillaume PY, Elkoun S, Robert M (2016) Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater Des 106:295–304

    Article  Google Scholar 

  48. 48

    Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  Google Scholar 

  49. 49

    Rachini A, Le Troedec M, Peyratout C, Smith A (2009) Comparison of the thermal degradation of natural, alkali-treated and silane-treated hemp fibers under air and an inert atmosphere. J Appl Polym Sci 112:226–234

    Article  Google Scholar 

  50. 50

    Zafeiropoulos NE, Vickers PE, Baillie CA, Watts JF (2003) An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR. J Mater Sci 38:3903–3914. doi:10.1023/A:1026133826672

    Article  Google Scholar 

  51. 51

    Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  Google Scholar 

  52. 52

    Boulos L, Foruzanmehr MR, Tagnit-Hamou A, Elkoun S, Robert M (2017) Wetting analysis and surface characterization of flax fibers modified with zirconia by sol-gel method. Surf Coat Technol 313:407–416

    Article  Google Scholar 

  53. 53

    Yan L, Chouw N, Yuan X (2012) Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J Reinf Plast Compos 31:425–437

    Article  Google Scholar 

  54. 54

    Ray D, Das M, Mitra D (2009) Influence of alkali treatment on creep properties and crystallinity of jute fibers. BioResources 4:730–739

    Google Scholar 

  55. 55

    Bera M, Alagirusamy R, Das A (2010) A study on interfacial properties of jute-PP composites. J Reinf Plast Compos 29:3155–3161

    Article  Google Scholar 

  56. 56

    Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos Part A 39:979–988

    Article  Google Scholar 

  57. 57

    Dibenedetto AT, Lex PJ (1989) Evaluation of surface treatments for glass fibres in composite materials. Polym Eng Sci 29:543–555

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mathieu Robert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fathi, B., Harirforoush, M., Foruzanmehr, M. et al. Effect of TEMPO oxidation of flax fibers on the grafting efficiency of silane coupling agents. J Mater Sci 52, 10624–10636 (2017). https://doi.org/10.1007/s10853-017-1224-1

Download citation

Keywords

  • Flax Fibers
  • TEMPO Oxidation
  • Silane Coupling Agent
  • Silane Treatment
  • Flax Yarn