Skip to main content
Log in

Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development in glucose and H2O2 electrochemical sensors has significantly progressed using some original nanomaterials, such as nanoparticles and nanowires in metal, metal oxide, or carbon nanomaterials. In this review, we discussed and analyzed the mechanism, performance, and characteristics of the enzyme/nonenzyme glucose and H2O2 electrochemical sensors based on some pure metal (Au, Pd, Ni, Pt, and Cu), metal oxide (ZnO, NiO, CuO x , TiO2, and Co3O4), and carbon (nanotubes and graphene) nanomaterials. Although the introduction of nanomaterials can effectively improve the sensitivity of enzyme glucose/H2O2 sensors by enhancing the activity of protein enzyme, the enzymes are sensitive to the biochemical environment. Meanwhile, the sensing performance of nonenzyme glucose/H2O2 sensors significantly depends on the morphology, uniformity, and distribution of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821

    Article  Google Scholar 

  2. Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications—a review. Rev Adv Mater Sci 36:62–69

    Google Scholar 

  3. Karuppiah C, Velmurugan M, Chen SM, Tsai SH, Lou BS, Ali MA et al (2015) A simple hydrothermal synthesis and fabrication of zinc oxide–copper oxide heterostructure for the sensitive determination of nonenzymatic glucose biosensor. Sens Actuat B Chem 221:1299–1306

    Article  Google Scholar 

  4. Miao R, Mu LX, Zhang HY, She GW, Zhou BJ, Xu HT et al (2014) Silicon nanowire-based fluorescent nanosensor for complexed Cu2+ and its bioapplications. Nano Lett 14:3124–3129

    Article  Google Scholar 

  5. Chartuprayoon N, Zhang ML, Bosze W, Choa YH, Myung NV (2015) One-dimensional nanostructures based bio-detection. Biosens Bioelectron 63:432–443

    Article  Google Scholar 

  6. Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565

    Article  Google Scholar 

  7. Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26:1825–1832

    Article  Google Scholar 

  8. Osman MH, Shah AA, Walsh FC (2011) Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells. Biosens Bioelectron 26:3087–3102

    Article  Google Scholar 

  9. Bhattacharya M, Hong S, Lee D, Cui T, Goyal SM (2011) Carbon nanotube based sensors for the detection of viruses. Sens Actuat B Chem 155:67–74

    Article  Google Scholar 

  10. Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV et al (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzym 99:56–67

    Article  Google Scholar 

  11. Park BW, Yoon DY, Kim DS (2010) Recent progress in bio-sensing techniques with encapsulated enzymes. Biosens Bioelectron 26:1–10

    Article  Google Scholar 

  12. Ding B, Wang MR, Wang XF, Yu JY, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13:16–27

    Article  Google Scholar 

  13. Kar P, Shankar K (2013) Biodiagnostics using oriented and aligned inorganic semiconductor nanotubes and nanowires. J Nanosci Nanotechnol 13:4473–4496

    Article  Google Scholar 

  14. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–593

    Article  Google Scholar 

  15. Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25

    Article  Google Scholar 

  16. Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J (2016) Diabetes and infection: assessing the association with glycaemic control in population-based studies. Lancet Diabetes Endocrinol 4:148–158

    Article  Google Scholar 

  17. Lv YX, Jin S, Wang Y, Lun ZQ, Xia CH (2016) Recent advances in the application of nanomaterials in enzymatic glucose sensors. J Iran Chem Soc 13:1767–1776

    Article  Google Scholar 

  18. Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910

    Article  Google Scholar 

  19. Zhang RZ, Chen W (2017) Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens Bioelectron 89:249–268

    Article  Google Scholar 

  20. Gao XH, He SJ, Zhang CM, Du C, Chen X, Xing W, Chen SL, Clayborne A, Chen W (2016) Single crystal sub-nanometer sized Cu6 (SR) 6 clusters: structure, photophysical properties, and electrochemical sensing. Adv Sci 3:1600126

    Article  Google Scholar 

  21. Gao XH, Lu Y, Liu M, He S, Chen W (2015) Sub-nanometer sized Cu 6 (GSH) 3 clusters: one-step synthesis and electrochemical detection of glucose. J Mater Chem C 3:4050–4056

    Article  Google Scholar 

  22. Zhang RZ, Chen W (2015) Fe3C-functionalized 3D nitrogen-doped carbon structures for electrochemical detection of hydrogen peroxide. Sci Bull 60:522–531

    Article  Google Scholar 

  23. Zhao MG, Huang JY, Zhou Y, Chen Q, Pan XH, He HP et al (2013) A single mesoporous ZnO/chitosan hybrid nanostructure for a novel free nanoprobe type biosensor. Biosens Bioelectron 43:226–230

    Article  Google Scholar 

  24. Zhang C, Li L, Ju J, Chen W (2016) Electrochemical sensor based on graphene-supported tin oxide nanoclusters for nonenzymatic detection of hydrogen peroxide. Electrochim Acta 210:181–189

    Article  Google Scholar 

  25. Senthamizhan A, Balusamy B, Uyar T (2016) Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408:1285–1306

    Article  Google Scholar 

  26. Sastry RK, Anshul S, Rao NH (2013) Nanotechnology in food processing sector—an assessment of emerging trends. J Food Sci Technol Mys 50:831–841

    Article  Google Scholar 

  27. Chen SH, Yuan R, Chai YQ, Hu FX (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  Google Scholar 

  28. Sadik OA, Aluoch AO, Zhou AL (2009) Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron 24:2749–2765

    Article  Google Scholar 

  29. Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70

    Article  Google Scholar 

  30. Yemini M, Reches M, Rishpon J, Gazit E (2005) Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 5:183–186

    Article  Google Scholar 

  31. Zhang XQ, Guo Q, Cui DX (2009) Recent advances in nanotechnology applied to biosensors. Sensors Basel 9:1033–1053

    Article  Google Scholar 

  32. Lee BY, Sung MG, Lee J, Baik KY, Kwon YK, Lee MS et al (2011) Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible? ACS Nano 5:4373–4379

    Article  Google Scholar 

  33. Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmstrom J (2014) Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2:4593–4609

    Article  Google Scholar 

  34. Pang X, Pan J, Wang L, Ren W, Gao P, Wei Q, Du B (2015) CdSe quantum dot functionalized TiO2 nanohybrids as a visible light induced photoelectrochemical platform for the detection of proprotein convertase subtilisin/kexin type 6. Biosens Bioelectron 71:88–97

    Article  Google Scholar 

  35. Xu K, Huang JR, Ye ZZ, Ying YB, Li YB (2009) Recent development of nanomaterials used in DNA biosensors. Sensors Basel 9:5534–5557

    Article  Google Scholar 

  36. Tang FQ, Li LL, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534

    Article  Google Scholar 

  37. Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci 4:033001

    Article  Google Scholar 

  38. Birol H, Rambo CR, Guiotoku M, Hotza D (2013) Preparation of ceramic nanoparticles via cellulose-assisted glycine nitrate process: a review. RSC Adv 3:2873–2884

    Article  Google Scholar 

  39. Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications—a review. J Nanosci Nanotechnol 15:1869–1894

    Article  Google Scholar 

  40. Stafiniak A, Boratynski B, Baranowska-Korczyc A, Szyszka A, Ramiaczek-Krasowska M, Prazmowska J et al (2011) A novel electrospun ZnO nanofibers biosensor fabrication. Sens Actuat B Chem 160:1413–1418

    Article  Google Scholar 

  41. Matlock-Colangelo L, Baeumner AJ (2012) Recent progress in the design of nanofiber-based biosensing devices. Lab Chip 12:2612–2620

    Article  Google Scholar 

  42. Stevens M (2014) Designing nanomaterials for ultrasensitive biosensing. New Biotechnol 31:S36

    Article  Google Scholar 

  43. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Article  Google Scholar 

  44. Si P, Huang YJ, Wang TH, Ma JM (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502

    Article  Google Scholar 

  45. Updike SJ, Shults M, Ekman B (1982) Implanting the glucose enzyme electrode-problems, progress, and alternative solutions. Diabetes Care 5:207–212

    Article  Google Scholar 

  46. Zhou SH, Feng X, Shi HY, Chen J, Zhang F, Song WB (2013) Direct growth of vertically aligned arrays of Cu(OH) (2) nanotubes for the electrochemical sensing of glucose. Sens Actuat B Chem 177:445–452

    Article  Google Scholar 

  47. Ahmad R, Tripathy N, Kim JH, Hahn YB (2012) Highly selective wide linear-range detecting glucose biosensors based on aspect-ratio controlled ZnO nanorods directly grown on electrodes. Sens Actuat B Chem 174:195–201

    Article  Google Scholar 

  48. Yang C, Xu CX, Wang XM (2012) ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications. Langmuir 28:4580–4585

    Article  Google Scholar 

  49. Zhao MG, Zhou Y, Cai B, Ma Y, Cai H, Ye ZZ et al (2013) The application of porous ZnO 3D framework to assemble enzyme for rapid and ultrahigh sensitive biosensors. Ceram Int 39:9319–9323

    Article  Google Scholar 

  50. Palod PA, Singh V (2015) Facile synthesis of high density polypyrrole nanofiber network with controllable diameters by one step template free electropolymerization for biosensing applications. Sens Actuat B Chem 209:85–93

    Article  Google Scholar 

  51. Yehezkeli O, Yan YM, Baravik I, Tel-Vered R, Willner I (2009) Integrated oligoaniline-cross-linked bomposites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems. Chem Eur J 15:2674–2679

    Article  Google Scholar 

  52. Wang HC, Wang XS, Zhang XQ, Qin X, Zhao ZX, Miao ZY et al (2009) A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 25:142–146

    Article  Google Scholar 

  53. Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  Google Scholar 

  54. Chen Y, Li Y, Sun D, Tian DB, Zhang JR, Zhu JJ (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21:7604–7611

    Article  Google Scholar 

  55. Su S, Sun HF, Xu F, Yuwen LH, Fan CH, Wang LH (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181:1497–1503

    Article  Google Scholar 

  56. Zhang HF, Meng ZC, Wang Q, Zheng JB (2011) A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles–carbon nanotubes composite film. Sens Actuat B Chem 158:23–27

    Article  Google Scholar 

  57. Devasenathipathy R, Mani V, Chen SM, Huang ST, Huang TT, Lin CM, Hwa KY, Chen TY, Chen BJ (2015) Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzyme Microb Technol 78:40–45

    Article  Google Scholar 

  58. Azak H, Kurbanoglu S, Yildiz HB, Ozkan SA (2016) Electrochemical glucose biosensing via new generation DTP type conducting polymers/gold nanoparticles/glucose oxidase modified electrodes. J Electroanal Chem 770:90–97

    Article  Google Scholar 

  59. Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53

    Article  Google Scholar 

  60. Ahmad M, Pan CF, Luo ZX, Zhu J (2010) A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J Phys Chem C 114:9308–9313

    Article  Google Scholar 

  61. Liu HC, Tsai CC, Wang GJ (2013) Glucose biosensors based on a gold nanodendrite modified screen-printed electrode. Nanotechnology 24:215101

    Article  Google Scholar 

  62. Pletcher D (1984) Electrocatalysis—present and future. J Appl Electrochem 14:403–415

    Article  Google Scholar 

  63. Burke LD (1994) Premonolayer oxidation and its role in electrocatalysis. Electrochim Acta 39:1841–1848

    Article  Google Scholar 

  64. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: aperspective and an evaluation. Int J Electrochem Sci 5:1246–1301

    Google Scholar 

  65. Lu LM, Li HB, Qu FL, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26:3500–3504

    Article  Google Scholar 

  66. Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655–1660

    Article  Google Scholar 

  67. Huang JS, Wang DW, Hou HQ, You TY (2008) Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv Funct Mater 18:441–448

    Article  Google Scholar 

  68. Li XL, Yao JY, Liu FL, He HC, Zhou M, Mao N et al (2013) Nickel/copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sens Actuat B Chem 181:501–508

    Article  Google Scholar 

  69. Wang Q, Wang QY, Qi K, Xue TY, Liu C, Zheng WT et al (2015) In situ preparation of porous Pd nanotubes on a GCE for non-enzymatic electrochemical glucose sensors. Anal Methods 7:8605–8610

    Article  Google Scholar 

  70. Xiao F, Zhao FQ, Mei DP, Mo ZR, Zeng BZ (2009) Nonenzymatic glucose sensor based on ultrasonic-electrode position of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens Bioelectron 24:3481–3486

    Article  Google Scholar 

  71. Zhang YQ, Wang YZ, Jia JB, Wang JG (2012) Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens Actuat B Chem 171:580–587

    Article  Google Scholar 

  72. Ding Y, Liu YX, Parisi J, Zhang LC, Lei Y (2011) A novel NiO–Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens Bioelectron 28:393–398

    Article  Google Scholar 

  73. Li HX, Hao WL, Hu JC, Wu HY (2013) A photoelectrochemical sensor based on nickel hydroxyl-oxide modified n-silicon electrode for hydrogen peroxide detection in an alkaline solution. Biosens Bioelectron 47:225–230

    Article  Google Scholar 

  74. Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952

    Article  Google Scholar 

  75. Cao F, Guo S, Ma HY, Shan DC, Yang SX, Gong JA (2011) Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance. Biosens Bioelectron 26:2756–2760

    Article  Google Scholar 

  76. Wang W, Zhang LL, Tong SF, Li X, Song WB (2009) Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens Bioelectron 25:708–714

    Article  Google Scholar 

  77. Zhou Y, Wang L, Ye ZZ, Zhao MG, Cai H, Huang JY (2013) Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor. Appl Surf Sci 285:344–349

    Article  Google Scholar 

  78. Wang X, Hui CG, Liu H, Du GJ, He XS, Xi Y (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens Actuat B Chem 144:220–225

    Article  Google Scholar 

  79. Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407

    Article  Google Scholar 

  80. Zhang P, Zhang L, Zhao GC, Feng F (2012) A highly sensitive nonenzymatic glucose sensor based on CuO nanowires. Microchim Acta 176:411–417

    Article  Google Scholar 

  81. Lee H, Yoon SW, Kim EJ, Park J (2007) In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett 7:778–784

    Article  Google Scholar 

  82. Qian L, Mao JF, Tian XQ, Yuan HY, Xiao D (2013) In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. Sens Actuat B Chem 176:952–959

    Article  Google Scholar 

  83. Casella IG (2002) Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)–tartrate complexes. J Electroanal Chem 520:119–125

    Article  Google Scholar 

  84. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal ChimActa 556:46–57

    Article  Google Scholar 

  85. Ding Y, Wang Y, Su LA, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co(3) O(4) nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548

    Article  Google Scholar 

  86. Han L, Yang DP, Liu AH (2015) Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosens Bioelectron 63:145–152

    Article  Google Scholar 

  87. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213

    Article  Google Scholar 

  88. Lang XY, Fu HY, Hou C, Han GF, Yang P, Liu YB et al (2013) Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun 4:2169

    Google Scholar 

  89. Zhu ZG, Garcia-Gancedo L, Flewitt AJ, Xie HQ, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors Basel 12:5996–6022

    Article  Google Scholar 

  90. Zhu ZG, Garcia-Gancedo L, Chen C, Zhu XR, Xie HQ, Flewitt AJ et al (2013) Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate. Sens Actuat B Chem 178:586–592

    Article  Google Scholar 

  91. Shiddiky MJA, Torriero AAJ (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775–1787

    Article  Google Scholar 

  92. Gao HC, Duan HW (2015) 2D and 3D graphene materials: preparation and bioelectrochemical applications. Biosens Bioelectron 65:404–419

    Article  Google Scholar 

  93. Liu MM, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    Article  Google Scholar 

  94. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58

    Article  Google Scholar 

  95. Zhang HL, Lai GS, Han DY, Yu AM (2008) An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal Bioanal Chem 390:971–977

    Article  Google Scholar 

  96. Zhang TJ, Wang W, Zhang DY, Zhang XX, Ma YR, Zhou YL et al (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160

    Article  Google Scholar 

  97. Yang T, Zhou N, Zhang YC, Zhang W, Jiao K, Li GC (2009) Synergistically improved sensitivity for the detection of specific DNA sequences using polyanilinenanofibers and multi-walled carbon nanotubes composites. Biosens Bioelectron 24:2165–2170

    Article  Google Scholar 

  98. Kafi AKM, Wu G, Chen A (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24:566–571

    Article  Google Scholar 

  99. Bo XJ, Bai J, Qi B, Guo LP (2011) Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosens Bioelectron 28:77–83

    Article  Google Scholar 

  100. Zhang PP, Zhao XN, Zhang X, Lai Y, Wang XT, Li JF et al (2014) Electrospun doping of carbon nanotubes and platinum nanoparticles into the beta-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications. ACS Appl Mater Interfaces 6:7563–7571

    Article  Google Scholar 

  101. Zhang XM, Li LM, Peng X, Chen RS, Huo KF, Chu PK (2013) Non-enzymatic hydrogen peroxide photo electrochemical sensor based on WO3 decorated core–shell TiC/C nanofibers electrode. Electrochim Acta 108:491–496

    Article  Google Scholar 

  102. Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70:498–503

    Article  Google Scholar 

  103. Yu JJ, Ma JR, Zhao FQ, Zeng BZ (2007) Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al2O3. Electrochim Acta 53:1995–2001

    Article  Google Scholar 

  104. Yu CM, Zhou XH, Gu HY (2010) Immobilization, direct electrochemistry and electrocatalysis of hemoglobin on colloidal silver nanoparticles-chitosan film. Electrochim Acta 55:8738–8743

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grants (Numbers 61405032, 61403074, 61605031, 61425003); and Doctoral Scientific Research Startup Foundation of Liaoning Province under Grant (Number 201501144); and Fundamental Research Funds for the Central Universities under Grants (Numbers N150404022, N150401001). Jin Li acknowledges the financial support from the China Scholarship Council for his Research Scholarship No. 201606085023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, H., Li, H. et al. Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2 . J Mater Sci 52, 10455–10469 (2017). https://doi.org/10.1007/s10853-017-1221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1221-4

Keywords

Navigation