Skip to main content
Log in

Structural, morphological, optical and photodetector properties of sprayed Li-doped ZnO thin films

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium-doped zinc oxide thin films (ZnO:Li) at different percentages (0–4%) were deposited on glass substrates at 460 °C using the spray pyrolysis technique. The effect of lithium content on the structural, morphological and optical properties of ZnO:Li thin films was investigated. First, X-ray diffraction study revealed that undoped and Li-doped ZnO thin films crystallize in hexagonal wurtzite structure with a preferred orientation of the crystallites along (002) direction. The scanning electron microscopy (SEM) showed a clear hexagonal-shaped granular onto the surface of such films. Indeed, the averaged grain size, visualized by SEM, varied from 100 nm, for undoped ZnO, to 200 nm for ZnO:Li 4%. Second, the optical analysis by means of the transmittance and the reflectance measurements revealed that in UV–Vis domain, the average transmittance of the ZnO:Li thin films was 75%, while the average reflectance was <35% in the visible range. Moreover, the band gap energy, E g, decreased from 3.285 to 3.264 eV as Li content increases. On the other hand, the photoluminescence spectra revealed emission with multiple peaks and exhibited especially two emission bands in UV and visible regions. Finally, the ZnO photodetectors showed superior performance in the view of photocurrent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Gordon RG (2000) Criteria for choosing transparent conductors. MRS Bull 25:52–57

    Article  Google Scholar 

  2. Lewis BG, Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bull 25:22–27

    Article  Google Scholar 

  3. Kamalanathan M, Karuppusamy S, Sivakumar R, Gopalakrishnan R (2015) Synthesis of reduced graphene oxide–copper tin sulphide composites and their photoconductivity enhancement for photovoltaic applications. J Mater Sci 50:8029–8037. doi:10.1007/s10853-015-9370-9

    Article  Google Scholar 

  4. Panda D, Tseng TY (2013) One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications. J Mater Sci 48:6849–6877. doi:10.1007/s10853-013-7541-0

    Article  Google Scholar 

  5. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  Google Scholar 

  6. Ondo-Ndong R, Ferblantier G, AlKalfioui M, Boyer A, Foucaran A (2003) Properties of RF magnetron sputtered zinc oxide thin films. J Cryst Growth 255:130–135

    Article  Google Scholar 

  7. Pimentel A, Rodrigues J, Duarte P, Nunes D, Costa FM, Monteiro T, Martins R, Fortunato E (2015) Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. J Mater Sci 50:5777–5787. doi:10.1007/s10853-015-9125-7

    Article  Google Scholar 

  8. Gao YF, Nagai M, Masuda Y, Sato F, Koumoto K (2006) Electrochemical deposition of ZnO film and its photoluminescence properties. J Cryst Growth 286:445–450

    Article  Google Scholar 

  9. Yuan H, Zhang L, Xu M, Du X (2015) Effect of sol pH on microstructures, optical and magnetic properties of (Co, Fe)-codoped ZnO films synthesized by sol–gel method. J Alloys Compd 651:571–577

    Article  Google Scholar 

  10. Liang H, Gordon RG (2007) Atmospheric pressure chemical vapor deposition of transparent conducting films of fluorine doped zinc oxide and their application to amorphous silicon solar cells. J Mater Sci 42:6388–6399. doi:10.1007/s10853-006-1255-5

    Article  Google Scholar 

  11. Haase M, Weller H, Henglin A (1988) Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization. J Phys Chem 92:482–487

    Article  Google Scholar 

  12. Guo D, Sato K, Hibino S, Takeuchi T, Bessho H, Kato K (2014) Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method. J Mater Sci 49:4722–4734. doi:10.1007/s10853-014-8172-9

    Article  Google Scholar 

  13. Yin XJ, Lai GR, Chen JS, Kao JS (1997) Conductivity enhancement in transparent ZnO films via Al-dopping produced by CW-CO2 laser-induced evaporation. Surf Coat Technol 90:239–246

    Article  Google Scholar 

  14. Tien LC, Pearton SJ, Norton DP, Ren F (2008) Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition. J Mater Sci 43:6925–6932. doi:10.1007/s10853-008-2988-0

    Article  Google Scholar 

  15. Murmu PP, Kennedy J, Ruck BJ, Williams GVM, Markwitz A, Rubanov S, Suvorova AA (2012) Effect of annealing on the structural, electrical and magnetic properties of Gd-implanted ZnO thin films. J Mater Sci 47:1119–1126. doi:10.1007/s10853-011-5883-z

    Article  Google Scholar 

  16. Hassan MM, Khan W, Naqvi AH, Mishra P, Islam SS (2014) Fe dopants enhancing ethanol sensitivity of ZnO thin film deposited by RF magnetron sputtering. J Mater Sci 49:6248–6256. doi:10.1007/s10853-014-8349-2

    Article  Google Scholar 

  17. Olvera D, Maldonado A, Asomoza R, Melendez-Lira M (2002) Effect of the substrate temperature and acidity of the spray solution on the physical properties of F-doped ZnO thin films deposited by chemical spray. Sol Energy Mater Sol Cells 71:61–71

    Article  Google Scholar 

  18. Tarwal NL, Rajgure AV, Patil JY, Khandekar MS, Suryavanshi SS, Patil PS, Jang JH (2013) A selective ethanol gas sensor based on spray-derived Ag–ZnO thin films. J Mater Sci 48:7274–7282. doi:10.1007/s10853-013-7547-7

    Article  Google Scholar 

  19. Kennedy J, Sundrakannan B, Katiyar RS, Markwitz A, Li Z, Gao W (2008) Raman scattering investigation of hydrogen and nitrogen ion implanted ZnO thin films. Curr Appl Phys 8:291–294

    Article  Google Scholar 

  20. Baba K, Lazzaroni C, Nikravech M (2015) ZnO and Al doped ZnO thin films deposited by Spray Plasma: effect of the growth time and Al doping on microstructural, optical and electrical properties. Thin Solid Films 595:129–135

    Article  Google Scholar 

  21. Hu D, Liu X, Deng S, Liu Y, Feng Z, Han B, Wang Y, Wang Y (2014) Structural and optical properties of Mn-doped ZnO nanocrystalline thin films with the different dopant concentrations. Phys E Low Dimens Syst Nanostruct 61:14–22

    Article  Google Scholar 

  22. Sarica E, Bilgin V (2016) Structural, optical, electrical and magnetic studies of ultrasonically sprayed ZnO thin films doped with vanadium. Surf Coat Technol 286:1–8

    Article  Google Scholar 

  23. Tang K, Gua S, Liu J, Ye J, Zhu S, Zheng Y (2015) Effects of indium doping on the crystallographic, morphological, electrical, and optical properties of highly crystalline ZnO films. J Alloys Compd 653:643–648

    Article  Google Scholar 

  24. Pal B, Sarkar D, Giri PK (2015) Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: correlation of magnetic moment with defect density. Appl Surf Sci 356:804–811

    Article  Google Scholar 

  25. Sáaedi A, Yousefi R, Jamali-Sheini F, Cheraghizade M, Khorsand Zak A, Ming Huang N (2013) Optical and electrical properties of p-type Li-doped ZnO nanowires. Superlattices Microstruct 61:91–96

    Article  Google Scholar 

  26. Han N, Wu X, Zhang D, Shen G, Liu H, Shen Y (2011) CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor. Sens Act B Chem 152:324–329

    Article  Google Scholar 

  27. Boubaker K, Chaouachi A, Amlouk M, Bouzouita H (2007) Enhancement of pyrolysis spray disposal performance using thermal time-response to precursor uniform deposition. Eur Phys J Appl Phys 37:105–109

    Article  Google Scholar 

  28. Chand P, Gaur A, Kumar A, Gaur UK (2014) Structural, morphological and optical study of Li doped ZnO thin films on Si (100) substrate deposited by pulsed laser deposition. Ceram Int 40:11915–11923

    Article  Google Scholar 

  29. Zeng Y-J, Ye Z-Z, Xu W-Z, Chen L-L, Li D-Y, Zhu L-P, Zhao B-H, Hu Y-L (2005) Realization of p-type ZnO films via monodoping of Li acceptor. J Cryst Growth 283:180

    Article  Google Scholar 

  30. Hsu HC, Cheng CS, Chang CC, Yang S, Chang CS, Hsieh WF (2005) Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates. Nanotechnology 16:297–301

    Article  Google Scholar 

  31. Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M (2012) Structural, opto-thermal and electrical properties of ZnO:Mo sprayed thin films. Mater Sci Semicond Process 15:282–292

    Article  Google Scholar 

  32. Tripathi R, Kumar A, Bharti C, Sinha TP (2010) Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method. Curr Appl Phys 10:676–681

    Article  Google Scholar 

  33. Junaid S, Qazi S, Rennie Adrian R, Cockcroft Jeremy K, Vickers M (2009) Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles. J Colloid Interface Sci 338:105–110

    Article  Google Scholar 

  34. Sahay PP, Nath RK (2008) Al-doped ZnO thin films as methanol sensors. Sens Act B Chem 134:654–659

    Article  Google Scholar 

  35. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, NewYork

    Google Scholar 

  36. Gherouel D, Gaied I, Boubaker K, Yacoubi N, Amlouk M (2012) Some physical investigations of AgInS2−xSex thin film compounds obtained from AgInS2 annealed in seleneide atmosphere. J Alloys Compd 545:190–199

    Article  Google Scholar 

  37. Samavati A, Nur H, Fauzi Ismail A, Othaman Z (2016) Radio frequency magnetron sputtered ZnO/SiO2/glass thin film: role of ZnO thickness on structural and optical properties. J Alloys Compd 671:170–176

    Article  Google Scholar 

  38. Douayar A, Diaz R, Cherkaoui El Moursli F, Schmerber G, Dinia A, Abd-Lefdil M (2011) Fluorine-doped ZnO thin films deposited by spray pyrolysis technique. Eur Phys J Appl Phys 53:20501–20504

    Article  Google Scholar 

  39. Lamba R, Umar A, Mehta SK, Kansal SK (2015) Well-crystalline porous ZnO–SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta 131:490–498

    Article  Google Scholar 

  40. Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall Inc, Englewoord Cliffs

    Google Scholar 

  41. Ilican S, Caglar Y, Caglar M (2008) Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. J Optoelectronic Adv M 10:2578–2583

    Google Scholar 

  42. Bedia FZ, Bedia A, Maloufi N, Aillerie M, Genty F, Benyoucef B (2014) Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique. J Alloys Compd 616:312–318

    Article  Google Scholar 

  43. Kennedy J, Murmu PP, Leveneur J, Markwitz A, Futter J (2016) Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment. Appl Surf Sci 367:52–58

    Article  Google Scholar 

  44. Lin KF, Cheng HM, Hsu HC, Lin LJ, Hsieh WF (2005) Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem Phys Lett 409:208–211

    Article  Google Scholar 

  45. Brus LE (1984) Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  Google Scholar 

  46. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324

    Article  Google Scholar 

  47. Belgacem S, Bennaceur R, Saurel J, Bougnot J (1990) Propriétés optiques des couches minces de SnO2 et CuInS2 airless spray. Rev Phys Appl 25:1245–1258

    Article  Google Scholar 

  48. Kamoun O, Boukhachem A, Mrabet C, Yumak A, Petkova P, Boubaker K, Amlouk M (2016) Effect of europium content on physical properties of In2O3 thin films for sensitivity and optoelectronic applications. Bull Mater Sci 39:777–788

    Article  Google Scholar 

  49. Wemple SH, Didomenico M (1977) Optical oscillator strengths and excitation energies in solids, liquids, and molecules. J Chem Phys 67:2151–2168

    Article  Google Scholar 

  50. Lee PA, Said G, Davis R, Lim TH (1969) On the optical properties of some layer compounds. J Phys Chem Solids 30:2719–2729

    Article  Google Scholar 

  51. Omar MA (1993) Elementary solid state physics. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  52. Wolaton AK, Moss TS (1963) Determination of refractive index and correction to effective electron mass in PbTe and PbSe. Proc R Soc Lond Ser A 81:509–513

    Google Scholar 

  53. Gervais F (2002) Optical conductivity of oxides. Mater Sci Eng, R 39:29–92

    Article  Google Scholar 

  54. Murmu PP, Mendelsberg RJ, Kennedy J, Carder DA, Ruck BJ, Markwitz A, Reeves RJ, Malar P, Osipowicz T (2011) Structural and photoluminescence properties of Gd implanted ZnO single crystals. J Appl Phys 110:033534

    Article  Google Scholar 

  55. Wei XQ, Man BY, Liu M, Xue CS, Zhuang HZ, Yang C (2007) Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Phys B Condens Matter 388:145–152

    Article  Google Scholar 

  56. Han Kim J, H-k Chung, Hwan OhK, Bae T-S, Hong W-K (2016) Influence of the contact interface on the electrical characteristics of a ZnO microwire with silver paste electrodes. J Alloys Compd 681:75–80

    Article  Google Scholar 

  57. Yuan G, Ye Z, Zhu L, Huang J, Qian Q, Zhao B (2004) Gold schottky contacts on n-type ZnO thin films with an Al/Si(1 0 0) substrates. J Cryst Growth 268:169–173

    Article  Google Scholar 

  58. Azimirad R, Khayatian A, Safa S, Almasi Kashi M (2014) Enhancing photoresponsivity of ultra violet photodetectors based on Fe doped ZnO/ZnO shell/core nanorods. J Alloys Compd 615:227–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Azizi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, M., Azizi, S., Boukhachem, A. et al. Structural, morphological, optical and photodetector properties of sprayed Li-doped ZnO thin films. J Mater Sci 52, 10439–10454 (2017). https://doi.org/10.1007/s10853-017-1218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1218-z

Keywords

Navigation