Skip to main content
Log in

Ultralow thermal conductivity of cerium-doped Nd2Zr2O7 over a wide doping range

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we report an ultralow thermal conductivity and a high-temperature phase stability of the (Nd1−x Ce x )2Zr2O7+x system over the temperature range from room temperature to 1600 °C and over a wide composition range (0.2 ≤ x ≤ 0.8), and the (Nd1−x Ce x )2Zr2O7+x system is therefore considered a strong candidate material for the fabrication of next-generation high-temperature thermal barrier coatings. The observed thermal conductivities (0.65–1.0 W/mK) are about 60–40% lower than those of undoped Nd2Zr2O7 over the same temperature range (100–700 °C) and indicate a glass-like behavior. For comparison, the variation in the thermal conductivity with the temperature of the (Gd1−x Ce x )2Zr2O7+x system with similar point defects was also measured, and the observed behavior was almost the same as that of undoped Gd2Zr2O7 and was mostly determined by phonon–phonon scattering (λ ∝ 1/T). The effect of point defect scattering and strong phonon scattering sources (rattlers) on the thermal conductivity is also discussed in this paper. The results of this study suggest that the ultralow thermal conductivity of (Nd1−x Ce x )2Zr2O7+x can be attributed to the presence of rattlers because of the large difference between the ionic radii of the Nd3+ and Ce4+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37:891. doi:10.1557/mrs.2012.232

    Article  Google Scholar 

  2. Backman DG, Williams JC (1992) Advanced materials for aircraft engine applications. Science 255:1082. doi:10.1126/science.255.5048.1082

    Article  Google Scholar 

  3. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296:280. doi:10.1126/science.1068609

    Article  Google Scholar 

  4. Perepezko JH (2009) The hotter the engine, the better. Science 326:1068. doi:10.1126/science.1179327

    Article  Google Scholar 

  5. Vassen R, Cao XQ, Tietz F, Basu D, Stöver D (2000) Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc 83:2023. doi:10.1111/j.1151-2916.2000.tb01506.x

    Article  Google Scholar 

  6. Cao XQ, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24:1. doi:10.1016/S0955-2219(03)00129-8

    Article  Google Scholar 

  7. Shen Y, Leckie RM, Levi CG, Clarke DR (2010) Low thermal conductivity without oxygen vacancies in equimolar YO1.5 + TaO2.5- and YbO1.5 + TaO2.5-stabilized tetragonal zirconia ceramics. Acta Mater 58:4424. doi:10.1016/j.actamat.2010.04.040

    Article  Google Scholar 

  8. Song X, Xie M, Mu R, Zhou F, Jia G, An S (2011) Influence of the partial substitution of Y2O3 with Ln2O3 (Ln = Nd, Sm, Gd) on the phase structure and thermophysical properties of ZrO2–Nb2O5–Y2O3 ceramics. Acta Mater 59:3895. doi:10.1016/j.actamat.2011.03.014

    Article  Google Scholar 

  9. Rahaman MN, Gross JR, Dutton RE, Wang H (2006) Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2–Gd2O3 compositions for potential thermal barrier coating applications. Acta Mater 54:1615. doi:10.1016/j.actamat.2005.11.033

    Article  Google Scholar 

  10. Schlichting KW, Padture NP, Klemens PG (2001) Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci 36:3003–3010. doi:10.1023/a:1017970924312

    Article  Google Scholar 

  11. Vaßen R, Traeger F, Stöver D (2004) New Thermal barrier coatings based on pyrochlore/YSZ double-layer systems. Int J Appl Ceram Technol 1:351. doi:10.1111/j.1744-7402.2004.tb00186.x

    Article  Google Scholar 

  12. Wu J, Wei X, Padture NP et al (2002) Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc 85:3031. doi:10.1111/j.1151-2916.2002.tb00574.x

    Article  Google Scholar 

  13. Winter MR, Clarke DR (2007) Oxide materials with low thermal conductivity. J Am Ceram Soc 90:533. doi:10.1111/j.1551-2916.2006.01410.x

    Article  Google Scholar 

  14. Ma W, Mack DE, Vaßen R, Stöver D (2008) Perovskite-type strontium zirconate as a new material for thermal barrier coatings. J Am Ceram Soc 91:2630. doi:10.1111/j.1551-2916.2008.02472.x

    Article  Google Scholar 

  15. Stöver D, Pracht G, Lehmann H, Dietrich M, Döring JE, Vaßen R (2004) New material concepts for the next generation of plasma-sprayed thermal barrier coatings. J Therm Spray Technol 13:76. doi:10.1007/s11666-004-0052-4

    Article  Google Scholar 

  16. Vassen R, Stuke A, Stöver D (2009) Recent developments in the field of thermal barrier coatings. J Therm Spray Technol 18:181. doi:10.1007/s11666-009-9312-7

    Article  Google Scholar 

  17. Liu ZG, Ouyang JH, Zhou Y (2008) Preparation and thermophysical properties of (NdxGd1−x)2Zr2O7 ceramics. J Mater Sci 43:3596–3603. doi:10.1007/s10853-008-2570-9

    Article  Google Scholar 

  18. Liu ZG, Ouyang JH, Zhou Y, Meng QC, Xia XL (2009) Order-disorder transition and thermal conductivity of (YbxNd1−x)2Zr2O7 solid solutions. Philos Mag 89:553. doi:10.1080/14786430802684126

    Article  Google Scholar 

  19. Moskal G, Swadźba L, Hetmańczyk M et al (2012) Characterisation of the microstructure and thermal properties of Nd2Zr2O7 and Nd2Zr2O7/YSZ thermal barrier coatings. J Eur Ceram Soc 32:2035. doi:10.1016/j.jeurceramsoc.2011.12.004

    Article  Google Scholar 

  20. Zhang Y, Guo L, Zhao X, Ye F (2014) Effects of non-stoichiometry on the mechanical properties of Nd2− xZr2+ xO7+ x /2 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ceramics. Mater Lett 136:157. doi:10.1016/j.matlet.2014.08.065

    Article  Google Scholar 

  21. Guo L, Zhang Y, Ye F (2015) Phase structure evolution and thermo-physical properties of nonstoichiometry Nd2− xZr2+ xO7+ x /2 pyrochlore ceramics. J Am Ceram Soc 98:1013. doi:10.1111/jace.13374

    Article  Google Scholar 

  22. Guo L, Zhang Y, Wang C, Zhao X, Ye F (2015) Phase structure evolution and thermal expansion variation of Sc2O3 doped Nd2Zr2O7 ceramics. Mater Des 82:114. doi:10.1016/j.matdes.2015.05.056

    Article  Google Scholar 

  23. Pan W, Phillpot SR, Wan C, Chernatynskiy A, Qu Z (2012) Low thermal conductivity oxides. MRS Bull 37:917. doi:10.1557/mrs.2012.234

    Article  Google Scholar 

  24. Wan CL, Pan W, Xu Q et al (2006) Effect of point defects on the thermal transport properties of (LaxGd1−x)2Zr2O7: experiment and theoretical model. Phys Rev B 74:144109

    Article  Google Scholar 

  25. Lehmann H, Pitzer D, Pracht G, Vassen R, Stöver D (2003) Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. J Am Ceram Soc 86:1338. doi:10.1111/j.1151-2916.2003.tb03473.x

    Article  Google Scholar 

  26. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A. doi:10.1107/s0567739476001551

    Google Scholar 

  27. Wang X, Jiang K, Zhou L (2015) Characterization and phase stability of pyrochlore (Nd1−xCex)2Zr2O7+y (x = 0–1). J Nucl Mater 458:156. doi:10.1016/j.jnucmat.2014.12.075

    Article  Google Scholar 

  28. Montini T, Speghini A, Rogatis LD et al (2009) Identification of the structural phases of CexZr1−xO2 by Eu(III) luminescence studies. J Am Chem Soc 131:13155. doi:10.1021/ja905158p

    Article  Google Scholar 

  29. Kang ZC (2006) Phases in Ce0.5Zr0.5O2−x system. J Alloys Compd 408–412:1103

    Article  Google Scholar 

  30. Barin I (1995) Thermochemical data of pure substances, 3rd edn. VCH Publishers, New York

    Book  Google Scholar 

  31. Perez-Y-Jorba M (1962) Etude des systemes zircone-oxydes de terres rares. Ann Chim 7:479

    Google Scholar 

  32. Vegard L (1921) The constitution of mixed crystals and the space occupied by atoms. Z Phys 5:17. doi:10.1007/bf01349680

    Article  Google Scholar 

  33. Klemens PG (1969) Theory of the thermal conductivity of solids. In: Tye RP (ed) Thermal conductivity. Academic Press, New York

    Google Scholar 

  34. Clarke DR, Levi CG (2003) Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res 33:383. doi:10.1146/annurev.matsci.33.011403.113718

    Article  Google Scholar 

  35. Wan C, Zhang W, Wang Y et al (2010) Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore. Acta Mater 58:6166. doi:10.1016/j.actamat.2010.07.035

    Article  Google Scholar 

  36. Wang Y, Yang F, Xiao P (2012) Glass-like thermal conductivities in (La1−x1)2(Zr1−x2)2O7−x2 (x = x1 + x2, 0 ≤ x≤1) solid solutions. Acta Mater 60:7024. doi:10.1016/j.actamat.2012.08.063

    Article  Google Scholar 

  37. Zhang Y, Xie M, Zhou F et al (2015) Influence of Er substitution for La on the thermal conductivity of (La1−xErx)2Zr2O7 pyrochlores. Mater Res Bull 64:175. doi:10.1016/j.materresbull.2014.12.064

    Article  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to Dr. RuishiXie, Dr. Guohua Ma, and Dr. Yang Cui for assistance with XRD, SEM and thermal diffusivity measurements. This work was supported by the project of NSFC–11505146 and defense industrial technology development program JCKY2016404C001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jiang, K. & Liu, S. Ultralow thermal conductivity of cerium-doped Nd2Zr2O7 over a wide doping range. J Mater Sci 52, 10098–10105 (2017). https://doi.org/10.1007/s10853-017-1212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1212-5

Keywords

Navigation