Skip to main content

Advertisement

Log in

Porous Co–Mo phosphide nanotubes: an efficient electrocatalyst for hydrogen evolution

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The construction of efficient and low-cost bimetallic phosphide catalysts for hydrogen evolution is still in challenge. In this work, a series of porous Co–Mo phosphide nanotubes which are synthesized via in situ phosphidation process of CoMoO4 nanorods precursor at different phosphatization temperature have been used for hydrogen evolution reaction (HER). X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption–desorption experiments were used to characterize the as-synthesized Co–Mo phosphide nanotubes. Results indicate that the phosphatization temperature is the key factor in the formation process of tube-like structure. The possible formation mechanism of Co–Mo phosphide nanotubes was further proposed. Additionally, the as-synthesized CoMoP-600 nanotubes displayed the highest HER catalytic performance and long-time durability in 0.5 M H2SO4 solution. The high catalytic performance of CoMoP-600 catalyst may be attributed to the favorable composition and the large surface area. This study shines a light in the application of bimetallic catalysts for the HER and provides us a new way to design and synthesize porous hollow tube-like structure materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Staszak-Jirkovsky J, Malliakas CD, Lopes PP, Danilovic N, Kota SS, Chang KC, Genorio B, Strmcnik D, Stamenkovic VR, Kanatzidis MG, Markovic NM (2016) Design of active and stable Co–Mo–S x chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat Mater 15:197–203

    Article  Google Scholar 

  2. Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45:1529–1541

    Article  Google Scholar 

  3. Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136:7587–7590

    Article  Google Scholar 

  4. Lin Y, Pan Y, Zhang J (2017) In situ construction of nickel phosphosulfide (Ni5P4| S) active species on 3D Ni foam through chemical vapor deposition for electrochemical hydrogen evolution. ChemElectroChem 4:1108–1116. doi:10.1002/celc.201600808

    Article  Google Scholar 

  5. Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, Mccandless BE, Birkmire RW, Chen JG (2010) Low-cost hydrogen evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew Chem 49:9859–9862

    Article  Google Scholar 

  6. Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H (2013) Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun 4:1444

    Article  Google Scholar 

  7. Bai S, Wang C, Deng M, Gong M, Bai Y, Jiang J, Xiong Y (2014) Surface polarization matters: enhancing the hydrogen evolution reaction by shrinking Pt shells in Pt–Pd–graphene stack structures. Angew Chem 53:12120–12124

    Article  Google Scholar 

  8. Zhao H, Zhu YP, Yuan ZY (2016) Three-dimensional electrocatalysts for sustainable water splitting reactions. Eur J Inorg Chem 2016:1916–1923

    Article  Google Scholar 

  9. Oyama ST, Wang X, Lee YK, Bando K, Requejo FG (2002) Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques. J Catal 210:207–217

    Article  Google Scholar 

  10. Kibsgaard J, Jaramillo TF, Besenbacher F (2014) Building an appropriate active-site motif into a hydrogen evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat Chem 6:248–253

    Article  Google Scholar 

  11. Hao J, Yang W, Zhang Z, Tang J (2015) Metal-organic frameworks derived Co x Fe1−x P nanocubes for electrochemical hydrogen evolution. Nanoscale 7:11055–11062

    Article  Google Scholar 

  12. Ma L, Hu Y, Chen R, Zhu G, Chen T, Lv H, Wang Y, Liang J, Liu H, Yan C, Zhu H, Tie Z, Jin Z, Liu J (2016) Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 24:139–147

    Article  Google Scholar 

  13. Cao S, Chen Y, Wang CJ, Lv XJ, Fu WF (2015) Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation. Chem Commun 51:8708–8711

    Article  Google Scholar 

  14. Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG (2013) Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 135:19186–19192

    Article  Google Scholar 

  15. Miao J, Xiao FX, Yang HB, Khoo SY, Chen J, Fan Z, Hsu YY, Chen HM, Zhang H, Liu B (2015) Hierarchical Ni–Mo–S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci Adv 1:e1500259

    Article  Google Scholar 

  16. Gupta S, Patel N, Fernandes R, Kadrekar R, Dashora A, Yadav AK, Bhattacharyya D, Jha SN, Miotello A, Kothari DC (2016) Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl Catal B Environ 192:126–133

    Article  Google Scholar 

  17. Mendoza-Garcia A, Zhu H, Yu Y, Li Q, Zhou L, Su D, Kramer MJ, Sun S (2015) Controlled anisotropic growth of Co–Fe–P from Co–Fe–O nanoparticles. Angew Chem 127:9778–9781

    Article  Google Scholar 

  18. Tan Y, Wang H, Liu P, Shen Y, Cheng C, Hirata A, Fujita T, Tang Z, Chen M (2016) Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ Sci 9:2257–2261

    Article  Google Scholar 

  19. Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang JY, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7:2624–2629

    Article  Google Scholar 

  20. Vesborg PCK, Seger B, Chorkendorff I (2015) Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett 6:951–957

    Article  Google Scholar 

  21. Wang D, Zhang X, Zhang D, Shen Y, Wu Z (2016) Influence of Mo/P Ratio on CoMoP nanoparticles as highly efficient HER catalysts. Appl Catal A Gen 511:11–15

    Article  Google Scholar 

  22. Wang X, Feng J, Bai Y, Zhang Q, Yin Y (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116:10983–11060. doi:10.1021/acs.chemrev.5b00731

    Article  Google Scholar 

  23. Park J, Zheng H, Jun YW, Alivisatos AP (2009) Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J Am Chem Soc 131:13943–13945

    Article  Google Scholar 

  24. Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic press, New York, p 144

    Google Scholar 

  25. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Springer, Netherlands

    Book  Google Scholar 

  26. Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Sun K, Yan YM (2016) Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution. J Mater Chem A 4:59–66

    Article  Google Scholar 

  27. Wang D, Zhang D, Tang C, Zhou P, Wu Z, Fang B (2016) Hydrogen evolution catalyzed by cobalt-promoted molybdenum phosphide nanoparticles. Catal Sci Technol 6:1952–1956

    Article  Google Scholar 

  28. Sivanantham A, Ganesan P, Shanmugam S (2016) Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv Funct Mater 26:4661–4672

    Article  Google Scholar 

  29. Pan Y, Lin Y, Chen Y, Liu Y, Liu C (2016) Cobalt phosphide-based electrocatalysts: synthesis and phase catalytic activity comparison for hydrogen evolution. J Mater Chem A 4:4745–4754

    Article  Google Scholar 

  30. Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X (2014) Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew Chem 126:6828–6832

    Article  Google Scholar 

  31. Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X (2016) Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28:215–230

    Article  Google Scholar 

  32. Rodriguez JA, Kim JY, Hanson JC, Sawhill SJ, Bussell ME (2003) Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies. J Phys Chem B 107:6276–6285

    Article  Google Scholar 

  33. Volbeda A, Charon MH, Piras C, Hatchikian EC (1995) Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    Article  Google Scholar 

  34. Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107:4152–4205

    Article  Google Scholar 

  35. Volbeda A, Garcin E, Piras C, de Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC (1996) Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989–12996

    Article  Google Scholar 

  36. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem 126:5531–5534

    Article  Google Scholar 

  37. Bai N, Li Q, Mao D, Li D, Dong H (2016) One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution. ACS Appl Mater Interfaces 8:29400–29407

    Article  Google Scholar 

  38. Conway B, Tilak B (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 47:3571–3594

    Article  Google Scholar 

  39. Chang YH, Wu FY, Chen TY, Hsu CL, Chen CH, Wiryo F, Wei KH, Chiang CY, Li LJ (2014) Three-dimensional molybdenum sulfide sponges for electrocatalytic water splitting. Small 10:895–900

    Article  Google Scholar 

  40. Zhang Y, Ouyang B, Xu J, Chen S, Rawat RS, Fan HJ (2016) 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen evolution reaction electrocatalysts. Adv Energy Mater 6:1600221–1600226

    Article  Google Scholar 

  41. Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y (2015) Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces 7:27242–27253

    Article  Google Scholar 

  42. Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2:1262–1267

    Article  Google Scholar 

  43. Pu Z, Liu Q, Tang C, Asiri AM, Sun X (2014) Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 6:11031–11034

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from the Fundamental Research Funds for the Central Universities (16CX06010A, 14CX05037A and 15CX05045A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Pan or Jun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Liu, M., Pan, Y. et al. Porous Co–Mo phosphide nanotubes: an efficient electrocatalyst for hydrogen evolution. J Mater Sci 52, 10406–10417 (2017). https://doi.org/10.1007/s10853-017-1204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1204-5

Keywords

Navigation