Advertisement

Journal of Materials Science

, Volume 52, Issue 17, pp 10163–10174 | Cite as

Rational synthesis and tailored optical and magnetic characteristics of Fe3O4–Au composite nanoparticles

  • Yang Liu
  • Qiangwei Kou
  • Dandan Wang
  • Lei Chen
  • Yantao Sun
  • Ziyang Lu
  • Yuanyuan Zhang
  • Yaxin Wang
  • Jinghai YangEmail author
  • Scott Guozhong XingEmail author
Chemical routes to materials

Abstract

To minimize saturation magnetization (Ms) degradation and simultaneously maintain the optical and magnetic responsiveness characteristics of Fe3O4/Au nanocomposites, we successfully prepared Fe3O4–Au seeds composite nanoparticles (NPs) by a novel seed deposition process. The effects of gold seeds coating amounts and the concentration of Fe3O4 NPs on the morphologies of final products are extensively characterized. The results of energy-dispersive spectrometry mapping show that the gold seeds are uniformly adhered onto the Fe3O4 NPs surfaces in precisely controlled amount. Importantly, with the electronic redistribution between Fe3O4 and Au NPs interfaces, the obvious position shifting of Fe 2p and Au 4f electronic binding energy peaks is observed. Upon increasing surface coatings of gold seeds, the electron deficiency on the gold NPs leads to the redshift of the absorption peak. Though Ms declines slightly due to the diamagnetic contribution from decorated gold seeds, the developed Fe3O4–Au seeds composite NPs possess the robust magnetic responsiveness and they are amenable to be separated and recycled by the external magnet, which facilitates great potential applications in biological, medical and photocatalytic fields.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Numbers 21676115, 61575080, 61675090, 61405072, 51609100 and 21546013); Program for the development of Science and Technology of Jilin province (Grant Numbers 20160101287JC, 20150519024JH, 20150520015JH and 20140519003JH); and Technology of Education Department of Jilin Province (Grant Number JJKH20170374KJ).

Supplementary material

10853_2017_1200_MOESM1_ESM.docx (428 kb)
Supplementary material 1 (DOCX 428 kb)

References

  1. 1.
    Gong J, Newman RS, Engel M, Zhao M, Bian F, Glotzer SC, Tang Z (2017) Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat Commun 8:14038CrossRefGoogle Scholar
  2. 2.
    Patsula V, Kosinová L, Lovrić M, Ferhatovic Hamzić L, Rabyk M, Konefal R, Paruzel A, Šlouf M, Herynek V, Gajović S, Horák D (2016) Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging. ACS Appl Mater Interfaces 8:7238–7247CrossRefGoogle Scholar
  3. 3.
    Karabchevsky A, Mosayyebi A, Kavokin AV (2016) Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles. Light Sci Appl 5:e16164CrossRefGoogle Scholar
  4. 4.
    Linnenbank H, Grynko Y, Forstner J, Linden S (2016) Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light Sci Appl 5:e16013CrossRefGoogle Scholar
  5. 5.
    Blum O, Shaked NT (2015) Prediction of photothermal phase signatures from arbitrary plasmonic nanoparticles and experimental verification. Light Sci Appl 4:e322CrossRefGoogle Scholar
  6. 6.
    Zhu Z, Bai B, You O, Li Q, Fan S (2015) Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application. Light Sci Appl 4:e296CrossRefGoogle Scholar
  7. 7.
    Svedendahl M, Verre R, Kall M (2014) Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers. Light Sci Appl 3:e220CrossRefGoogle Scholar
  8. 8.
    Wang P, Wang Y, Tong L (2013) Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light Sci Appl 2:e102CrossRefGoogle Scholar
  9. 9.
    Wang J, Wu X, Wang C, Rong Z, Ding H, Li H, Li S, Shao N, Dong P, Xiao R, Wang S (2016) Facile synthesis of au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl Mater Interfaces 8:19958–19967CrossRefGoogle Scholar
  10. 10.
    Du C-X, Zhang T-B, Dong S-L, Han L, Liang X-J, Li L-H, Wei Y (2016) A magnetic gene delivery nanosystem based on cationic liposomes. J Mater Sci 51:8461–8470. doi: 10.1007/s10853-016-0106-2 CrossRefGoogle Scholar
  11. 11.
    Lee CC, Yoshikawa N, Taniguchi S (2011) Microwave-induced substitutional-combustion reaction of Fe3O4/Al ceramic matrix porous composite. J Mater Sci 46:7004–7011CrossRefGoogle Scholar
  12. 12.
    Ren S, Zhang X, Dong L, Lei T, Teng Z, Song K, Sun X, Wu Q (2017) Cellulose nanocrystal supported superparamagnetic nanorods with aminated silica shell: synthesis and properties. J Mater Sci 52:6432–6441. doi: 10.1007/s10853-017-0878-z CrossRefGoogle Scholar
  13. 13.
    Zhang X-Y, Sun S-H, Sun X-J, Zhao Y-R, Chen L, Yang Y, Lu W, Li D-B (2016) Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light Sci Appl 5:e16130CrossRefGoogle Scholar
  14. 14.
    Liu HL, Song JL, Liu HB, Cheng X, Gao M, Li WJ, Zhang X, Fei LH, Liu Y, Yang JH (2015) Cu-doped effect on structural, optical and magnetic properties of Ce-doped ZnO nanoparticles. Nanosci Nanotechnol Lett 7:517–520CrossRefGoogle Scholar
  15. 15.
    Liu ST, Zhang DW, Piao GZ (2015) Ultrasonic effect on lyotropic chiral nematic liquid crystal of cellulose nanocrystal. Chin J Liq Crys Disp 30:229–233CrossRefGoogle Scholar
  16. 16.
    Xing GZ, Yi JB, Wang DD, Liao L, Yu T, Shen ZX, Huan CHA, Sum TC, Ding J, Wu T (2009) Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3−δ nanostructures. Phys Rev B 79:174406CrossRefGoogle Scholar
  17. 17.
    Sun Y, Li Q (2016) Research of zinc oxide quantum dot light-emitting diodes based on preparation of chemical solutions. J Liq Crys Disp 31:635–642CrossRefGoogle Scholar
  18. 18.
    Xing GZ, Xing GC, Li MJ, Sie EJ, Wang DD, Sulistio A, Ye QL, Huan CGA, Wu T, Sum TC (2011) Charge transfer dynamics in Cu-doped ZnO nanowires. Appl Phys Lett 98:102105CrossRefGoogle Scholar
  19. 19.
    Liu J, Li YB, Hou YB, Wang Y, Lv LF (2016) Organic/inorganic composite electrical bistable devices based on composite of poly(N-vinylcarbazole) and lead sulfide nanocrystals. J Liq Crys Disp 31:643–648CrossRefGoogle Scholar
  20. 20.
    Qu D, Zheng M, Li J, Xie ZG, Sun ZC (2015) Tailoring color emissions from N-doped grapheme quantum dots for bioimaging applications. Light Sci Appl 4:e364CrossRefGoogle Scholar
  21. 21.
    Zhao DY, Deng SY, Kang JX, Wang Q, Xu LH, Guo L, Yang H (2015) Electro-optical properties of liquid crystal display doped with Ag nanowires. J Liq Crys Disp 30:208–212CrossRefGoogle Scholar
  22. 22.
    Lin L-S, Cong Z-X, Cao J-B, Ke K-M, Peng Q-L, Gao J, Yang H-H, Liu G, Chen X (2014) Multifunctional Fe3O4@Polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 8:3876–3883CrossRefGoogle Scholar
  23. 23.
    Sun Z, Du J, Yan L, Chen S, Yang Z, Jing C (2016) Multifunctional Fe3O4@SiO2–Au satellite structured SERS probe for charge selective detection of food dyes. ACS Appl Mater Interfaces 8:3056–3062CrossRefGoogle Scholar
  24. 24.
    Dong Y-Y, Liu S, Liu Y-J, Meng L-Y, Ma M-G (2017) Ag@Fe3O4@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution. J Mater Sci 52:8219–8230. doi: 10.1007/s10853-017-1038-1 CrossRefGoogle Scholar
  25. 25.
    Read CG, Gordon TR, Hodges JM, Schaak RE (2015) Colloidal hybrid nanoparticle insertion reaction for transforming heterodimers into heterotrimers. J Am Chem Soc 137:12514–12517CrossRefGoogle Scholar
  26. 26.
    Hodges JM, Morse JR, Fenton JL, Ackerman JD, Alameda LT, Schaak RE (2017) Insights into the seeded-growth synthesis of colloidal hybrid nanoparticles. Chem Mater 29:106–119CrossRefGoogle Scholar
  27. 27.
    Jin C, Qu Y, Wang M, Han J, Hu Y, Guo R (2016) Aqueous solution-based Fe3O4 seed-mediated route to hydrophilic Fe3O4–Au janus nanoparticles. Langmuir 32:4595–4601CrossRefGoogle Scholar
  28. 28.
    Kang Y, Ye X, Chen J, Qi L, Diaz RE, Doan-Nguyen V, Xing G, Kagan CR, Li J, Gorte RJ, Stach EA, Murray CB (2013) Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. J Am Chem Soc 135:1499–1505CrossRefGoogle Scholar
  29. 29.
    Wang D, Yang J, Li X, Zhai H, Lang J, Song H (2016) Preparation of magnetic Fe3O4@SiO2@mTiO2–Au spheres with well-designed microstructure and superior photocatalytic activity. J Mater Sci 51:9602–9612. doi: 10.1007/s10853-016-0167-2 CrossRefGoogle Scholar
  30. 30.
    Yang S-C, Ahn C-W, Park C-S, Yang Y, Viehland D, Priya S (2010) Controlled synthesis of MnFe2O4–Ni core–shell nanoparticles. J Mater Sci 45:1419–1424. doi: 10.1007/s10853-009-4110-7 CrossRefGoogle Scholar
  31. 31.
    Park JC, Lee GT, Seo JH (2017) Mannose-functionalized core@shell nanoparticles and their interactions with bacteria. J Mater Sci 52:1534–1545. doi: 10.1007/s10853-016-0448-9 CrossRefGoogle Scholar
  32. 32.
    Hayes R, Ahmed A, Edge T, Zhang H (2014) Core–shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A 1357:36–52CrossRefGoogle Scholar
  33. 33.
    Ye M, Wei Z, Hu F, Wang J, Ge G, Hu Z, Shao M, Lee S-T, Liu J (2015) Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering. Nanoscale 7:13427–13437CrossRefGoogle Scholar
  34. 34.
    Yan F, Sun R (2014) Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol. Mater Res Bull 57:293–299CrossRefGoogle Scholar
  35. 35.
    Levin CS, Hofmann C, Ali TA, Kelly AT, Morosan E, Nordlander P, Whitmire KH, Halas NJ (2009) Magnetic − plasmonic core − shell nanoparticles. ACS Nano 3:1379–1388CrossRefGoogle Scholar
  36. 36.
    Xia Q, Fu S, Ren G, Chai F, Jiang J, Qu F (2016) Fabrication of Fe3O4@Au hollow spheres with recyclable and efficient catalytic properties. New J Chem 40:818–824CrossRefGoogle Scholar
  37. 37.
    Wang Y, Xu F, Zhang L, Wei X (2012) One-pot solvothermal synthesis of Fe3O4–PEI composite and its further modification with Au nanoparticles. J Nanopart Res 15:1338CrossRefGoogle Scholar
  38. 38.
    Zhang Q, Ge J, Goebl J, Hu Y, Sun Y, Yin Y (2010) Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties. Adv Mater 22:1905–1909CrossRefGoogle Scholar
  39. 39.
    Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1:293–298CrossRefGoogle Scholar
  40. 40.
    Gao Y, Gu J, Li L, Zhao W, Li Y (2016) Synthesis of gold nanoshells through Improved seed-mediated growth approach: brust-like, in situ seed formation. Langmuir 32:2251–2258CrossRefGoogle Scholar
  41. 41.
    Roto R, Yusran Y, Kuncaka A (2016) Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption. Appl Surf Sci 377:30–36CrossRefGoogle Scholar
  42. 42.
    Huff TB, Hansen MN, Zhao Y, Cheng J-X, Wei A (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23:1596–1599CrossRefGoogle Scholar
  43. 43.
    Kadasala NR, Wei A (2015) Trace detection of tetrabromobisphenol A by SERS with DMAP-modified magnetic gold nanoclusters. Nanoscale 7:10931–10935CrossRefGoogle Scholar
  44. 44.
    Kim D, Lee N, Park M, Kim BH, An K, Hyeon T (2009) Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc 131:454–455CrossRefGoogle Scholar
  45. 45.
    Leonov AP, Wei A (2011) Photolithography of dithiocarbamate-anchored monolayers and polymers on gold. J Mater Chem 21:4371–4376CrossRefGoogle Scholar
  46. 46.
    Dey R, Mukherjee N, Ahammed S, Ranu BC (2012) Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chem Commun 48:7982–7984CrossRefGoogle Scholar
  47. 47.
    Wan J, Tang J, Zhang C, Yuan R, Chen K (2015) Insight into the formation of magnetite mesocrystals from ferrous precursors in ethylene glycol. Chem Commun 51:15910–15913CrossRefGoogle Scholar
  48. 48.
    Zhang M, Xia P, Wang L, Zheng J, Wang Y, Xu J, Wang L (2014) Synthesis and fabrication of CNTs/Fe3O4@Pdop@Au nanocables by a facile approach. RSC Adv 4:44423–44426CrossRefGoogle Scholar
  49. 49.
    Lou L, Yu K, Zhang Z, Huang R, Wang Y, Zhu Z (2012) Facile methods for synthesis of core–shell structured and heterostructured Fe3O4@Au nanocomposites. Appl Surf Sci 258:8521–8526CrossRefGoogle Scholar
  50. 50.
    Butter K, Bomans PHH, Frederik PM, Vroege GJ, Philipse AP (2003) Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat Mater 2:88–91CrossRefGoogle Scholar
  51. 51.
    Zheng J, Liu ZQ, Zhao XS, Liu M, Liu X, Chu W (2012) One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnology 23:165601CrossRefGoogle Scholar
  52. 52.
    Kosarieh S, Morina A, Flemming J, Lainé E, Neville A (2016) Wear mechanisms of hydrogenated DLC in oils containing MoDTC. Tribol Lett 64:4CrossRefGoogle Scholar
  53. 53.
    Ye Y, Kuai L, Geng B (2012) A template-free route to a Fe3O4–Co3O4 yolk-shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media. J Mater Chem 22:19132–19138CrossRefGoogle Scholar
  54. 54.
    Klyushin AY, Rocha TCR, Havecker M, Knop-Gericke A, Schlogl R (2014) A near ambient pressure XPS study of Au oxidation. PCCP 16:7881–7886CrossRefGoogle Scholar
  55. 55.
    Yu D-H, Yu X, Wang C, Liu X-C, Xing Y (2012) Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties. ACS Appl Mater Interfaces 4:2781–2787CrossRefGoogle Scholar
  56. 56.
    Xing Y, Jin Y-Y, Si J-C, Peng M-L, Wang X-F, Chen C, Cui Y-L (2015) Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles. J Magn Magn Mater 380:150–156CrossRefGoogle Scholar
  57. 57.
    Zhang H, Sun Y, Wang J, Zhang J, Zhang H, Zhou H, Song D (2012) Preparation and application of novel nanocomposites of magnetic-Au nanorod in SPR biosensor. Biosens Bioelectron 34:137–143CrossRefGoogle Scholar
  58. 58.
    Wu Y, Zhang T, Zheng Z, Ding X, Peng Y (2010) A facile approach to Fe3O4@Au nanoparticles with magnetic recyclable catalytic properties. Mater Res Bull 45:513–517CrossRefGoogle Scholar
  59. 59.
    Yang D, Pang X, He Y, Wang Y, Chen G, Wang W, Lin Z (2015) Precisely size-tunable magnetic/plasmonic core/shell nanoparticles with controlled optical properties. Angew Chem 127:12259–12264CrossRefGoogle Scholar
  60. 60.
    Wang B, Qu S (2014) Absorption spectra and near-electric field enhancement effects of Au- and Ag–Fe3O4 dimers. Appl Surf Sci 292:1002–1008CrossRefGoogle Scholar
  61. 61.
    Schick I, Gehrig D, Montigny M, Balke B, Panthöfer M, Henkel A, Laquai F, Tremel W (2015) Effect of charge transfer in magnetic-plasmonic Au@MOx (M = Mn, Fe) heterodimers on the kinetics of nanocrystal formation. Chem Mater 27:4877–4884CrossRefGoogle Scholar
  62. 62.
    Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au − Fe3O4 nanoparticles. Nano Lett 5:379–382CrossRefGoogle Scholar
  63. 63.
    Hu Y, Meng L, Niu L, Lu Q (2013) Facile synthesis of superparamagnetic Fe3O4@polyphosphazene@Au shells for magnetic resonance imaging and photothermal therapy. ACS Appl Mater Interfaces 5:4586–4591CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yang Liu
    • 1
    • 2
  • Qiangwei Kou
    • 1
    • 2
  • Dandan Wang
    • 3
  • Lei Chen
    • 1
    • 2
  • Yantao Sun
    • 1
    • 2
  • Ziyang Lu
    • 4
  • Yuanyuan Zhang
    • 1
    • 2
  • Yaxin Wang
    • 1
    • 2
  • Jinghai Yang
    • 1
    • 2
    Email author
  • Scott Guozhong Xing
    • 5
    Email author
  1. 1.College of PhysicsJilin Normal UniversitySipingChina
  2. 2.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchunChina
  3. 3.Technology Development DepartmentGLOBALFOUNDRIES (Singapore) Pte. Ltd.SingaporeSingapore
  4. 4.School of Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
  5. 5.United Microelect Corp. Ltd.SingaporeSingapore

Personalised recommendations