Skip to main content
Log in

High carrier mobility in quasi-suspended few-layer graphene on printed graphene oxide layers

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Heterostructures of graphene (G) or multilayer graphene (MLG) transferred on the graphene oxide (GO) printed layer are considered in the present study. Hillocks with a height of about 60–100 nm are found at the background GO relief of 10–15 nm. Graphene in these heterostructures completely follows the GO relief. The quasi-suspended layers on the hillocks are observed for MLG, and the distance between MLG and GO is estimated up to 20–40 nm. An increase in the MLG thickness is suggested to increase the distance between MLG and GO. Carrier mobility in G/GO heterostructures is found to equal 300–500 cm2/V s. The formation of quasi-suspended MLG/GO structures leads to an increase in the carrier mobility up to 4500 cm2/V s with an increase in the MLG thickness (3–8 nm). The change in the carrier mobility in MLG as a function of voltage sweep direction is also observed. The effect is supposedly connected with the ability of the quasi-suspended layer to corrugate under the gate voltage application. The capsulation of heterostructures using GO films leads to the carrier mobility degradation to 300–500 cm2/V s in one–four weeks. The quasi-suspended structures are promising for flexible and/or printed electronics at the use as graphene channels for sensors, detectors and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kamyshny A, Magdassi S (2014) Conductive nanomaterials for printed electronics. Small 10:3515–3535. doi:10.1002/smll.201303000

    Article  Google Scholar 

  2. Italiano Istituto, di Tecnologia Graphene, Labs Capasso A, Del Rio Castillo AE et al (2015) Ink-jet printing of graphene for flexible electronics—an environment-friendly approach. Solid State Commun 224:53–63. doi:10.1016/j.ssc.2015.08.011

    Article  Google Scholar 

  3. Li J, Lemme MC, Östling M (2014) Inkjet printing of 2D layered materials. ChemPhysChem 15:3427–3434. doi:10.1002/cphc.201402103

    Article  Google Scholar 

  4. Li W, Li F, Li H et al (2016) Flexible circuits and soft actuators by printing assembly of graphene. ACS Appl Mater Interfaces 8:12369–12376. doi:10.1021/acsami.6b04235

    Article  Google Scholar 

  5. Wang S, Ang PK, Wang Z et al (2010) High mobility, printable, and solution-processed graphene electronics. Nano Lett 10:92–98. doi:10.1021/nl9028736

    Article  Google Scholar 

  6. Torrisi F, Hasan T, Wu W et al (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006. doi:10.1021/nn2044609

    Article  Google Scholar 

  7. Soots RA, Yakimchuk EA, Nebogatikova NA et al (2016) Graphene suspensions for 2D printing. Tech Phys Lett 42:438–441. doi:10.1134/S1063785016040246

    Article  Google Scholar 

  8. Li J, Ye F, Vaziri S et al (2013) Efficient inkjet printing of graphene. Adv Mater 25:3985–3992. doi:10.1002/adma.201300361

    Article  Google Scholar 

  9. Su Y, Jia S, Du J et al (2015) Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction. Nano Res 8:3954–3962. doi:10.1007/s12274-015-0897-5

    Article  Google Scholar 

  10. Lee SK, Jang HY, Jang S et al (2012) All graphene-based thin film transistors on flexible plastic substrates. Nano Lett 12:3472–3476. doi:10.1021/nl300948c

    Article  Google Scholar 

  11. Standley B, Mendez A, Schmidgall E, Bockrath M (2012) Graphene-graphite oxide field-effect transistors. Nano Lett 12:1165–1169. doi:10.1021/nl2028415

    Article  Google Scholar 

  12. Jewel MU, Siddiquee TA, Islam MR (2013) Flexible graphene field effect transistor with graphene oxide dielectric on polyimide substrate. In: 2013 International conference on electrical information and communication technology EICT 2013. doi:10.1109/EICT.2014.6777834

  13. Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339. doi:10.1021/ja01539a017

    Article  Google Scholar 

  14. Antonova IV, Kotin IA, Popov VI et al (2016) Graphene-oxide films printed on rigid and flexible substrates for a wide spectrum of applications. Semiconductors 50:1065–1073. doi:10.1134/S1063782616080066

    Article  Google Scholar 

  15. Antonova IV, Golod SV, Soots RA et al (2014) Comparison of various methods for transferring graphene and few layer graphene grown by chemical vapor deposition to an insulating SiO2/Si substrate. Semiconductors 48:804–808. doi:10.1134/S1063782614060049

    Article  Google Scholar 

  16. Sidorov AN, Yazdanpanah MM, Jalilian R et al (2007) Electrostatic deposition of graphene. Nanotechnology 18:135301. doi:10.1088/0957-4484/18/13/135301

    Article  Google Scholar 

  17. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355. doi:10.1016/j.ssc.2008.02.024

    Article  Google Scholar 

  18. Lv H, Wu H, Liu J et al (2013) High carrier mobility in suspended-channel graphene field effect transistors. Appl Phys Lett. doi:10.1063/1.4828835

    Google Scholar 

  19. Sojoudi H, Baltazar J, Tolbert LM et al (2012) Creating graphene p-n junctions using self-assembled monolayers. ACS Appl Mater Interfaces 4:4781–4786. doi:10.1021/am301138v

    Article  Google Scholar 

  20. Pinto H, Markevich A (2014) Electronic and electrochemical doping of graphene by surface adsorbates. Beilstein J Nanotechnol 5:1842–1848. doi:10.3762/bjnano.5.195

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. S.A. Smagulova, Scientific Researcher of Ammosov North-Eastern Federal University, for providing the graphene oxide suspension. This study was financially supported by the Russian Science Foundation (Grant No. 15-12-00008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kotin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonova, I.V., Basyleva, E.V. & Kotin, I.A. High carrier mobility in quasi-suspended few-layer graphene on printed graphene oxide layers. J Mater Sci 52, 10230–10236 (2017). https://doi.org/10.1007/s10853-017-1186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1186-3

Keywords

Navigation