Skip to main content
Log in

Ni supported on YSZ: XAS and XPS characterization and catalytic activity for CO2 methanation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ni supported on yttrium-stabilized zirconium oxide catalysts have been prepared by electroless plating method. Structure, electronic and chemical state of Ni as a function of Ni content (1, 7 and 12 wt%) have been characterized combining X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction (H2-TPR) and BET. The catalytic activity for the CO2 methanation was studied in the 250–500 °C temperature range, finding the highest CO2 conversion and CH4 selectivity for the catalyst with the largest Ni loading. A dependence of activity and CH4 selectivity on Ni crystallites size was highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Reiter G, Lindorfer J (2015) Evaluating CO2 sources for power-to-gas applications: a case study for Austria. J CO2 Util 10:40–49

    Article  Google Scholar 

  2. Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D (2015) Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrogen Energy 40:4285–4294

    Article  Google Scholar 

  3. Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrogen Energy 38:2039–2061

    Article  Google Scholar 

  4. Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation—from fundamentals to current projects. Fuel 166:276–296

    Article  Google Scholar 

  5. Meylan FD, Moreau V, Erkman S (2016) Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation. Energy Policy 94:366–376

    Article  Google Scholar 

  6. Aziz MAA, Jalil AA, Triwahyono S, Ahmad A (2015) CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chem 17:2647–2663

    Article  Google Scholar 

  7. Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR (2014) Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl Catal B 147:359–368

    Article  Google Scholar 

  8. Westermann A, Azambre B, Bacariza MC, Graça I, Ribeiro MF, Lopes JM, Henriques C (2015) Insight into CO2 methanation mechanism over NiUSY zeolites: an operando IR study. Appl Catal B 174–175:120–125

    Article  Google Scholar 

  9. Takano H, Kirihata Y, Izumiya K, Kumagai N, Habazaki H, Hashimoto K (2016) Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation. Appl Surf Sci 388:653–663

    Article  Google Scholar 

  10. da Silva DCD, Letichevsky S, Borges LEP, Appel LG (2012) The Ni/ZrO2 catalyst and the methanation of CO and CO2. Int J Hydrogen Energy 37:8923–8928

    Article  Google Scholar 

  11. Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R (2012) Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int J Hydrogen Energy 37:5527–5531

    Article  Google Scholar 

  12. Kwak JH, Kovarik L, Szanyi J (2013) CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catal 3:2449–2455

    Article  Google Scholar 

  13. Kwak JH, Kovarik L, Szanyi J (2013) Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal 3:2094–2100

    Article  Google Scholar 

  14. Ocampo F, Louis B, Kiwi-Minsker L, Roger A-C (2011) Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1−xO2 catalysts for carbon dioxide methanation. Appl Catal A 392:36–44

    Article  Google Scholar 

  15. Mutz B, Carvalho HWP, Mangold S, Kleist W, Grunwaldt J-D (2015) Methanation of CO2: structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy. J Catal 327:48–53

    Article  Google Scholar 

  16. He S, Li C, Chen H, Su D, Zhang B, Cao X, Wang B, Wei M, Evans DG, Duan X (2013) A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability. Chem Mater 25:1040–1046

    Article  Google Scholar 

  17. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. Chemsuschem 2:18–45

    Article  Google Scholar 

  18. Behrens M (2015) Coprecipitation: an excellent tool for the synthesis of supported metal catalysts—from the understanding of the well known recipes to new materials. Catal Today 246:46–54

    Article  Google Scholar 

  19. Tao K, Zhou S, Zhang Q, Kong C, Ma Q, Tsubaki N, Chen L (2013) Sol–gel auto-combustion synthesis of Ni–CexZr1−xO2 catalysts for carbon dioxide reforming of methane. RSC Adv 3:22285

    Article  Google Scholar 

  20. Wu Z, Ge S, Zhang M, Li W, Tao K (2009) Synthesis of nickel nanoparticles supported on metal oxides using electroless plating: controlling the dispersion and size of nickel nanoparticles. J Colloid Interface Sci 330:359–366

    Article  Google Scholar 

  21. Wu Z, Chen J, Di Q, Zhang M (2012) Size-controlled synthesis of a supported Ni nanoparticle catalyst for selective hydrogenation of p-nitrophenol to p-aminophenol. Catal Commun 18:55–59

    Article  Google Scholar 

  22. Hwang BJ (1995) Reaction mechanism of electroless deposition: observations of morphology evolution during nucleation and growth via tapping mode AFM. J Electrochem Soc 142:3749

    Article  Google Scholar 

  23. Wang TC, Chen B, Rubner MF, Cohen RE (2001) Selective electroless nickel plating on polyelectrolyte multilayer platforms. Langmuir 17:6610–6615

    Article  Google Scholar 

  24. Meneghini C, Bardelli F, Mobilio S (2012) ESTRA-FitEXA: a software package for EXAFS data analysis. Nucl Instrum Methods Phys Res, Sect B 285:153–157

    Article  Google Scholar 

  25. Mobilio S, Boscherini F, Meneghini C (eds) (2015) Synchrotron radiation: basics, methods and applications. Springer, Berlin

    Google Scholar 

  26. Battocchio C, Fratoddi I, Fontana L, Bodo E, Porcaro F, Meneghini C, Pis I, Nappini S, Mobilio S, Russo MV, Polzonetti G (2014) Silver nanoparticles linked by a Pt-containing organometallic dithiol bridge: study of local structure and interface by XAFS and SR-XPS. Phys Chem Chem Phys 16:11719–11728

    Article  Google Scholar 

  27. Battocchio C, Fratoddi I, Fontana L, Bodo E, Porcaro F, Meneghini C, Pis I, Nappini S, Mobilio S, Russo MV, Polzonetti G (2014) Silver nanoparticles linked by a Pt-containing organometallic dithiol bridge: study of local structure and interface by XAFS and SR-XPS. Phys Chem Chem Phys 16:11719

    Article  Google Scholar 

  28. Bergeret G, Gallezot P (2008) Particle size and dispersion measurements. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  29. Rodriguez JA, Hanson JC, Frenkel AI, Kim JY, Pérez M (2002) Experimental and theoretical studies on the reaction of H2 with NiO: role of O vacancies and mechanism for oxide reduction. J Am Chem Soc 124:346–354

    Article  Google Scholar 

  30. Wei Y-L, Lin Y-Y, Yang J-Q, Wang HP, Hsiung T-L (2007) Effect of plasma treatment on Ni molecular environment in a spent catalyst and a plating sludge. J Electron Spectrosc Relat Phenom 156–158:232–235

    Article  Google Scholar 

  31. Bellido JDA, Assaf EM (2009) Effect of the Y2O3–ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane. Appl Catal A 352:179–187

    Article  Google Scholar 

  32. Mori H (2003) Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique. Appl Catal A 245:79–85

    Article  Google Scholar 

  33. Aldana PAU, Ocampo F, Kobl K, Louis B, Thibault-Starzyk F, Daturi M, Bazin P, Thomas S, Roger AC (2013) Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catal Today 215:201–207

    Article  Google Scholar 

  34. Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS (2015) Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway. Catal Sci Technol 5:4154–4163

    Article  Google Scholar 

  35. Wang X, Shi H, Kwak JH, Szanyi J (2015) Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: kinetics and transient DRIFTS-MS studies. ACS Catal 5:6337–6349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Luisetto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesavan, J.K., Luisetto, I., Tuti, S. et al. Ni supported on YSZ: XAS and XPS characterization and catalytic activity for CO2 methanation. J Mater Sci 52, 10331–10340 (2017). https://doi.org/10.1007/s10853-017-1179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1179-2

Keywords

Navigation