Abstract
Organs have always been among the most important musical instruments in Europe. Because of their highly complex mechanical systems and the wide variety of materials they are made of, such as metal, ivory, wood or paperboard, they are considered one of the hardest instruments to preserve. Particularly, the different materials used to make the pipes, mainly tin or lead alloys, are sensitive to environmental conditions such as temperature and moisture, and consequent decay. The alteration processes are mostly due to tin-pest development or to the oxidation. As a consequence, sound quality decreases or, in the worst cases, pipes are completely lost. The aim of this work is to investigate several Italian pipe fragments dating from the seventeenth to twentieth century, in order to: (1) analyse the raw materials and the traditional manufacturing of organ pipes, in relation to conservation issues; (2) characterize the particular decay processes; (3) outline a suitable methodological approach to characterize the most common alterations of metal organ pipes. For this purpose, during the analytical campaign, both non-invasive and micro-destructive methodologies were performed, i.e. stereomicroscopy observations, X-ray fluorescence analysis, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis and X-ray diffraction. The application of the proposed analytical procedure allowed the differentiation of the pipe fragments examined into several groups on the basis of original materials and morphological characteristics.







Similar content being viewed by others
References
Miriello D et al (2010) Diagnostics, deterioration and provenance of stone materials from the Jefferson Page tomb (Non-Catholic Cemetery of Rome, Italy). Environ Earth Sci 60(4):829–836. doi:10.1007/s12665-009-0220-4
Crupi V et al (2015) Multi-technique investigation of Roman decorated plasters from Villa dei Quintili (Rome, Italy). Appl Surf Sci 349:924–930. doi:10.1016/j.apsusc.2015.05.074
Invernizzi C, Daveri A, Rovetta T, Vagnini M, Licchelli M, Cacciatori F, Malagodi M (2016) A multi-analytical non-invasive approach to violin materials: the case of Antonio Stradivari “Hellier” (1679). Microchem J 124:743–750. doi:10.1016/j.microc.2015.10.016
Angster J, András M (1995) Documentation of the sound of a historical pipe organ. Appl Acoust 46(1):61–82. doi:10.1016/0003-682X(95)93951-D
Mapelli C, Nicodemi W, Venturini R (2005) Analysis and research of damage phenomena on tin based organ pipes of different ages. Surf Eng 21(5-6):373–377. doi:10.1179/174329305X64349
Esposito E, Basile G (2000) Conservazione e restauro degli organi storici: problemi, metodi, strumenti. Edizioni De Luca, Roma
Sebastianelli M, Alescio A (2010) Gli organi storici in Sicilia: storia, tecnica, conservazione. Edifir, Florence
Fletcher NH, Rossing T (2008) The physics of musical instruments. Springer, Berlin
Shannon JR (2009) Understanding the pipe organ: a guide for students. Teachers and Lovers of the Instrument, McFarland
Chiavari C et al (2008) Atmospheric corrosion of historical organ pipes: the influence of environment and materials. Corros Sci 50(9):2444–2455. doi:10.1016/j.corsci.2008.06.045
Chiavari C, Martini C, Poli G, Prandstraller D (2004) Conservation of organ pipes: protective treatments of lead exposed to acetic acid vapours. In Proceedings of the international conference on metal conservation (metal 04), National Museum of Australia, Canberra (Australia), pp. 281–293
Niklasson A, Langer S, Arrhenius K, Rosell L, Bergsten CJ, Johansson LG and Svensson JE (2008) Air pollutant concentrations and atmospheric corrosion of organ pipes in European church environments. Stud Conserv 53(1):24–40
Gibson LT, Watt CM (2010) Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corros Sci 52(1):172–178. doi:10.1016/j.corsci.2009.08.054
Chiavari C, Martini C, Poli G, Prandstraller D (2006) Deterioration of tin-rich organ pipes. J Mater Sci 41(6):1819–1826. doi:10.1007/s10853-006-2896-0
Styrkas AD (2003) Mechanisms of the allotropic transition of Sn. Inorg Mater 39(8):806–810. doi:10.1023/A:1025065027495
De Ryck I, Van Biezen E, Leyssens K, Adriaens A, Storme P, Adams F (2004) Study of tin corrosion: the influence of alloying elements. J Cult Herit 5(2):189–195. doi:10.1016/j.culher.2003.10.002
Zeng G, Mcdonald SD, Sweatman K, and Nogita, K. (2014) Tin pest in lead-free solders. Fundamental studies on the effect of impurities on phase transformation kinetics. In Electronics packaging (ICEP), IEEE pp 135–139. doi:10.1109/ICEP.2014.6826677
Kariya Y, Williams N, Gagg C, Plumbridge W (2001) Tin pest in Sn-0.5 wt% Cu lead-free solder. J Miner, Met Mater Soc 53(6):39–41. doi:10.1007/s11837-001-0101-0
Erdmann OL (1851) Ueber eine merkwürdige Structurveränderung bleihaltigen Zinnes. J Prakt Chem 52(1):428–431. doi:10.1002/prac.18510520153
Plenderleith HJ, Organ RM (1954) The decay and conservation of museum objects of tin. Stud Conserv 01:63–72. doi:10.1179/sic.1953.008
Becker JH (1958) On the quality of gray tin crystals and their rate of growth. J Appl Phys 29(7):1110–1121. doi:10.1063/1.1723369
ASM International and The Dialog Corporation (1999) Alloy phase diagrams, Vol. 3, ASM Handbook on CD-ROM
Lutterotti L, Matthies S, Wenk HS, Schultz AS, Richardson JW (1997) Texture and structure analysis of deformed limestone from neutron diffraction spectra. J App Phys 81:594–600. doi:10.1063/1.364220
Wenk HR, Lutterotti L, Vogel SC (2010) Rietveld texture analysis from TOF neutron diffraction data. Powder Diffr 25:283–297. doi:10.1154/1.3479004
Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152. doi:10.1107/S0365110X67000234
Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. doi:10.1107/S0021889869006558
Scott DA (1992) Metallography and microstructure in ancient and historic metals. Getty publications
Antonaccio N, Spinelli S (2002) a cura di. Inzoli Cav. Pacifico. Premiato Stabilimento d’Organi, Lettere e progetti
Bedos De Celles F (1995) L’arte del costruttore di organi. Editrice Turris, Cremona, pp 137–334
Di Maio D, Hunt C (2009) Time-lapse photography of the β-Sn/α-Sn allotropic transformation. J Mater Sci: Mater Electron 20(4):386–391. doi:10.1007/s10854-008-9739-5
Bovelacci A, Ciliberto E, Greco E, Viscuso E (2013) Surface and bulk investigations of organ metal pipe degradation. Procedia Chem 8:130–138. doi:10.1016/j.proche.2013.03.018
Joo YJ, Takemoto T (2002) Transformation of Sn-Cu alloy from white tin to gray tin. Mater Lett 56(5):793–796. doi:10.1016/S0167-577X(02)00615-8
Skwarek A, Sroda M, Pluska M, Czerwinski A, Ratajczak J, Witek K (2011) Occurrence of tin pest on the surface of tin-rich lead-free alloys. Solder Surf Mt Tech 23(3):184–190. doi:10.1108/09540911111146944
Nogita K, Gourlay CM, McDonald SD, Suenaga S, Read J, Zeng G, Gu QF (2013) XRD study of the kinetics of β ↔ α transformations in tin. Philos Mag 93(27):3627–3647. doi:10.1080/14786435.2013.820381
Eckert A (2008) Organ pipes and tin pest.”. Mater Corross 59(3):254–260. doi:10.1002/maco.200804151
Deflorian F, Fedel M (2013) Electrochemical analysis of the degradation of lead alloy organ-pipes due to acetic acid. J Cult Herit 14(3):254–260. doi:10.1016/j.culher.2012.06.002
De Keersmaecker M, Verbeken K, Adriaens A (2014) Lead dodecanoate coatings for the protection of lead and lead-tin alloy artifacts: two examples. Appl Surf Sci 292:149–160. doi:10.1016/j.apsusc.2013.11.103
Festa G et al (2013) Simultaneous and integrated neutron-based techniques for material analysis of a metallic ancient flute. Meas Sci Technol 24(9):095601. doi:10.1088/0957-0233/24/9/095601
Muktepavel FO, Upit GP (1984) The embrittlement of Sn–Al eutectic alloy in water vapour. J Mater Sci 19(2):599–606. doi:10.1007/BF00553585
Reifsnider K, Rabbi F, Vadlamudi V, Raihan R, Brinkman K (2017) Critical path-driven property and performance transitions in heterogeneous microstructures. J Mater Sci 52(9):4796–4809. doi:10.1007/s10853-017-0791-5
Acknowledgements
The authors would like to gratefully acknowledge Claudio Bonizzi for providing samples of organ pipes and for his precious technical information.
Funding
This study was not funded.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Albano, M., Fichera, G.V., Rovetta, T. et al. Microstructural investigations on historical organ pipes. J Mater Sci 52, 9859–9871 (2017). https://doi.org/10.1007/s10853-017-1134-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-017-1134-2

