Skip to main content

Advertisement

Log in

Microstructural investigations on historical organ pipes

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organs have always been among the most important musical instruments in Europe. Because of their highly complex mechanical systems and the wide variety of materials they are made of, such as metal, ivory, wood or paperboard, they are considered one of the hardest instruments to preserve. Particularly, the different materials used to make the pipes, mainly tin or lead alloys, are sensitive to environmental conditions such as temperature and moisture, and consequent decay. The alteration processes are mostly due to tin-pest development or to the oxidation. As a consequence, sound quality decreases or, in the worst cases, pipes are completely lost. The aim of this work is to investigate several Italian pipe fragments dating from the seventeenth to twentieth century, in order to: (1) analyse the raw materials and the traditional manufacturing of organ pipes, in relation to conservation issues; (2) characterize the particular decay processes; (3) outline a suitable methodological approach to characterize the most common alterations of metal organ pipes. For this purpose, during the analytical campaign, both non-invasive and micro-destructive methodologies were performed, i.e. stereomicroscopy observations, X-ray fluorescence analysis, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis and X-ray diffraction. The application of the proposed analytical procedure allowed the differentiation of the pipe fragments examined into several groups on the basis of original materials and morphological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Miriello D et al (2010) Diagnostics, deterioration and provenance of stone materials from the Jefferson Page tomb (Non-Catholic Cemetery of Rome, Italy). Environ Earth Sci 60(4):829–836. doi:10.1007/s12665-009-0220-4

    Article  Google Scholar 

  2. Crupi V et al (2015) Multi-technique investigation of Roman decorated plasters from Villa dei Quintili (Rome, Italy). Appl Surf Sci 349:924–930. doi:10.1016/j.apsusc.2015.05.074

    Article  Google Scholar 

  3. Invernizzi C, Daveri A, Rovetta T, Vagnini M, Licchelli M, Cacciatori F, Malagodi M (2016) A multi-analytical non-invasive approach to violin materials: the case of Antonio Stradivari “Hellier” (1679). Microchem J 124:743–750. doi:10.1016/j.microc.2015.10.016

    Article  Google Scholar 

  4. Angster J, András M (1995) Documentation of the sound of a historical pipe organ. Appl Acoust 46(1):61–82. doi:10.1016/0003-682X(95)93951-D

    Article  Google Scholar 

  5. Mapelli C, Nicodemi W, Venturini R (2005) Analysis and research of damage phenomena on tin based organ pipes of different ages. Surf Eng 21(5-6):373–377. doi:10.1179/174329305X64349

    Article  Google Scholar 

  6. Esposito E, Basile G (2000) Conservazione e restauro degli organi storici: problemi, metodi, strumenti. Edizioni De Luca, Roma

    Google Scholar 

  7. Sebastianelli M, Alescio A (2010) Gli organi storici in Sicilia: storia, tecnica, conservazione. Edifir, Florence

    Google Scholar 

  8. Fletcher NH, Rossing T (2008) The physics of musical instruments. Springer, Berlin

    Google Scholar 

  9. Shannon JR (2009) Understanding the pipe organ: a guide for students. Teachers and Lovers of the Instrument, McFarland

    Google Scholar 

  10. Chiavari C et al (2008) Atmospheric corrosion of historical organ pipes: the influence of environment and materials. Corros Sci 50(9):2444–2455. doi:10.1016/j.corsci.2008.06.045

    Article  Google Scholar 

  11. Chiavari C, Martini C, Poli G, Prandstraller D (2004) Conservation of organ pipes: protective treatments of lead exposed to acetic acid vapours. In Proceedings of the international conference on metal conservation (metal 04), National Museum of Australia, Canberra (Australia), pp. 281–293

  12. Niklasson A, Langer S, Arrhenius K, Rosell L, Bergsten CJ, Johansson LG and Svensson JE (2008) Air pollutant concentrations and atmospheric corrosion of organ pipes in European church environments. Stud Conserv 53(1):24–40

    Google Scholar 

  13. Gibson LT, Watt CM (2010) Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corros Sci 52(1):172–178. doi:10.1016/j.corsci.2009.08.054

    Article  Google Scholar 

  14. Chiavari C, Martini C, Poli G, Prandstraller D (2006) Deterioration of tin-rich organ pipes. J Mater Sci 41(6):1819–1826. doi:10.1007/s10853-006-2896-0

    Article  Google Scholar 

  15. Styrkas AD (2003) Mechanisms of the allotropic transition of Sn. Inorg Mater 39(8):806–810. doi:10.1023/A:1025065027495

    Article  Google Scholar 

  16. De Ryck I, Van Biezen E, Leyssens K, Adriaens A, Storme P, Adams F (2004) Study of tin corrosion: the influence of alloying elements. J Cult Herit 5(2):189–195. doi:10.1016/j.culher.2003.10.002

    Article  Google Scholar 

  17. Zeng G, Mcdonald SD, Sweatman K, and Nogita, K. (2014) Tin pest in lead-free solders. Fundamental studies on the effect of impurities on phase transformation kinetics. In Electronics packaging (ICEP), IEEE pp 135–139. doi:10.1109/ICEP.2014.6826677

  18. Kariya Y, Williams N, Gagg C, Plumbridge W (2001) Tin pest in Sn-0.5 wt% Cu lead-free solder. J Miner, Met Mater Soc 53(6):39–41. doi:10.1007/s11837-001-0101-0

    Article  Google Scholar 

  19. Erdmann OL (1851) Ueber eine merkwürdige Structurveränderung bleihaltigen Zinnes. J Prakt Chem 52(1):428–431. doi:10.1002/prac.18510520153

    Article  Google Scholar 

  20. Plenderleith HJ, Organ RM (1954) The decay and conservation of museum objects of tin. Stud Conserv 01:63–72. doi:10.1179/sic.1953.008

    Article  Google Scholar 

  21. Becker JH (1958) On the quality of gray tin crystals and their rate of growth. J Appl Phys 29(7):1110–1121. doi:10.1063/1.1723369

    Article  Google Scholar 

  22. ASM International and The Dialog Corporation (1999) Alloy phase diagrams, Vol. 3, ASM Handbook on CD-ROM

  23. Lutterotti L, Matthies S, Wenk HS, Schultz AS, Richardson JW (1997) Texture and structure analysis of deformed limestone from neutron diffraction spectra. J App Phys 81:594–600. doi:10.1063/1.364220

    Article  Google Scholar 

  24. Wenk HR, Lutterotti L, Vogel SC (2010) Rietveld texture analysis from TOF neutron diffraction data. Powder Diffr 25:283–297. doi:10.1154/1.3479004

    Article  Google Scholar 

  25. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152. doi:10.1107/S0365110X67000234

    Article  Google Scholar 

  26. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. doi:10.1107/S0021889869006558

    Google Scholar 

  27. Scott DA (1992) Metallography and microstructure in ancient and historic metals. Getty publications

  28. Antonaccio N, Spinelli S (2002) a cura di. Inzoli Cav. Pacifico. Premiato Stabilimento d’Organi, Lettere e progetti

    Google Scholar 

  29. Bedos De Celles F (1995) L’arte del costruttore di organi. Editrice Turris, Cremona, pp 137–334

    Google Scholar 

  30. Di Maio D, Hunt C (2009) Time-lapse photography of the β-Sn/α-Sn allotropic transformation. J Mater Sci: Mater Electron 20(4):386–391. doi:10.1007/s10854-008-9739-5

    Google Scholar 

  31. Bovelacci A, Ciliberto E, Greco E, Viscuso E (2013) Surface and bulk investigations of organ metal pipe degradation. Procedia Chem 8:130–138. doi:10.1016/j.proche.2013.03.018

    Article  Google Scholar 

  32. Joo YJ, Takemoto T (2002) Transformation of Sn-Cu alloy from white tin to gray tin. Mater Lett 56(5):793–796. doi:10.1016/S0167-577X(02)00615-8

    Article  Google Scholar 

  33. Skwarek A, Sroda M, Pluska M, Czerwinski A, Ratajczak J, Witek K (2011) Occurrence of tin pest on the surface of tin-rich lead-free alloys. Solder Surf Mt Tech 23(3):184–190. doi:10.1108/09540911111146944

    Article  Google Scholar 

  34. Nogita K, Gourlay CM, McDonald SD, Suenaga S, Read J, Zeng G, Gu QF (2013) XRD study of the kinetics of β ↔ α transformations in tin. Philos Mag 93(27):3627–3647. doi:10.1080/14786435.2013.820381

    Article  Google Scholar 

  35. Eckert A (2008) Organ pipes and tin pest.”. Mater Corross 59(3):254–260. doi:10.1002/maco.200804151

    Article  Google Scholar 

  36. Deflorian F, Fedel M (2013) Electrochemical analysis of the degradation of lead alloy organ-pipes due to acetic acid. J Cult Herit 14(3):254–260. doi:10.1016/j.culher.2012.06.002

    Article  Google Scholar 

  37. De Keersmaecker M, Verbeken K, Adriaens A (2014) Lead dodecanoate coatings for the protection of lead and lead-tin alloy artifacts: two examples. Appl Surf Sci 292:149–160. doi:10.1016/j.apsusc.2013.11.103

    Article  Google Scholar 

  38. Festa G et al (2013) Simultaneous and integrated neutron-based techniques for material analysis of a metallic ancient flute. Meas Sci Technol 24(9):095601. doi:10.1088/0957-0233/24/9/095601

    Article  Google Scholar 

  39. Muktepavel FO, Upit GP (1984) The embrittlement of Sn–Al eutectic alloy in water vapour. J Mater Sci 19(2):599–606. doi:10.1007/BF00553585

    Article  Google Scholar 

  40. Reifsnider K, Rabbi F, Vadlamudi V, Raihan R, Brinkman K (2017) Critical path-driven property and performance transitions in heterogeneous microstructures. J Mater Sci 52(9):4796–4809. doi:10.1007/s10853-017-0791-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge Claudio Bonizzi for providing samples of organ pipes and for his precious technical information.

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malagodi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albano, M., Fichera, G.V., Rovetta, T. et al. Microstructural investigations on historical organ pipes. J Mater Sci 52, 9859–9871 (2017). https://doi.org/10.1007/s10853-017-1134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1134-2

Keywords