Journal of Materials Science

, Volume 52, Issue 16, pp 9424–9429 | Cite as

Near-infrared-emitting colloidal Ag2S quantum dots excited by an 808 nm diode laser

  • Yanyan Zhang
  • Jinfeng Xia
  • Caixia Li
  • Guohong Zhou
  • Wei Yang
  • Dandan Wang
  • Huiping Zheng
  • Yuansheng Du
  • Xi Li
  • Qiang LiEmail author
Chemical routes to materials


Thioglycolic acid (TGA)-coated colloidal Ag2S quantum dots (QDs) emitting in the near-infrared (NIR) region upon excitation by an 808 nm diode laser were synthesized. The observed photoluminescence (PL) was attributed to the presence of ligand-modified Ag2S on the QD surfaces and could be easily controlled by a simple dilution process due to the concentration-dependent surface structure of the colloidal QDs. Upon dilution of the solution, the PL intensity initially increased before later decreasing, with a blueshift being observed in the PL spectra. These phenomena can be accounted for by the aggregation of QDs due to a decrease in the content of ligand-modified Ag2S on the QD surfaces upon dilution, which in turn affected the fluorescence resonance energy transfer (FRET), and re-emission of the surface energy level.


Fluorescence Resonance Energy Transfer Indocyanine Green Ag2S Thioglycolic Acid Increase Ligand Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Duman FD, Hocaoglu I, Ozturk DG, Gozuacik D, Kiraz A, Yagci Acar H (2015) Highly luminescent and cytocompatible cationic Ag2S NIR-emitting quantum dots for optical imaging and gene transfection. Nanoscale 7:11352–11362CrossRefGoogle Scholar
  2. 2.
    Tan LJ, Wan A, Li H (2014) Synthesis of near-infrared quantum dots in cultured cancer cells. ACS Appl Mater Interfaces 6:18–23CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Liu Y, Li C, Chen X, Wang Q (2014) Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton bohr radius. J Phys Chem C 118:4918–4923CrossRefGoogle Scholar
  4. 4.
    Dakovski GL, Shan J (2013) Size dependence of two-photon absorption in semiconductor quantum dots. J Appl Phys 114:014301CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Zhang Y, Hong G, He W, Zhou K, Yang K, Li F, Chen G, Liu Z, Dai H, Wang Q (2013) Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34:3639–3646CrossRefGoogle Scholar
  6. 6.
    Chen J, Zhang T, Feng L, Zhang M, Zhang X, Su H, Cui D (2013) Synthesis of ribonuclease-A conjugated Ag2S quantum dots clusters via biomimetic route. Mater Lett 96:224–227CrossRefGoogle Scholar
  7. 7.
    Jiang P, Zhu CN, Zhang ZL, Tian ZQ, Pang DW (2012) Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33:5130–5135CrossRefGoogle Scholar
  8. 8.
    Hocaoglu I, Demir F, Birer O, Kiraz A, Sevrin C, Grandfils C, Acar HY (2014) Emission tunable, cyto/hemocompatible, near-IR-emitting Ag2S quantum dots by aqueous decomposition of DMSA. Nanoscale 6:11921–11931CrossRefGoogle Scholar
  9. 9.
    Liu M, Zhao H, Chen S, Wang H, Quan X (2012) Photochemical synthesis of highly fluorescent CdTe quantum dots for “on–off–on” detection of Cu(II) ions. Inorg Chim Acta 392:236–240CrossRefGoogle Scholar
  10. 10.
    Gui R, Sun J, Liu D, Wang Y, Jin H (2014) A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag2S quantum dots emitting in the second near-infrared biological window. Dalton Trans 43:16690–16697CrossRefGoogle Scholar
  11. 11.
    Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y (2010) Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc 132:1470–1471CrossRefGoogle Scholar
  12. 12.
    Gui R, Sun J, Liu D, Wang Y, Jin H (2014) A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag2S quantum dots emitting in the second near-infrared biological window. Dalton Trans 43:16690–16697CrossRefGoogle Scholar
  13. 13.
    Kumar N, Alam F, Dutta V (2016) Photoluminescence study of oleic acid capped and hexanoic acid washed CdS quantum dots. RSC Adv. 6:28316–28321CrossRefGoogle Scholar
  14. 14.
    Wang C, Wang Y, Xu L, Zhang D, Liu M, Li X, Sun H, Lin Q, Yang B (2012) Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: tunable photoluminescence from red to near infrared. Small 8:3137–3142CrossRefGoogle Scholar
  15. 15.
    Hocaoglu I, Çizmeciyan MN, Erdem R, Ozen C, Kurt A, Sennaroglu A, Acar HY (2012) Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J Mater Chem 22:14674–14681CrossRefGoogle Scholar
  16. 16.
    Tang R, Xue J, Xu B, Shen D, Sudlow GP, Achilefu S (2015) Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano 9:220CrossRefGoogle Scholar
  17. 17.
    Wei HH, Evans CM, Swartz BD, Neukirch AJ, Young J, Prezhdo OV, Krauss TD (2012) Colloidal semiconductor quantum dots with tunable surface composition. Nano Lett 12:4465–4471CrossRefGoogle Scholar
  18. 18.
    Lifshitz E (2015) Evidence in support of exciton to ligand vibrational coupling in colloidal quantum dots. J Phys Chem Lett 6:4336–4347CrossRefGoogle Scholar
  19. 19.
    Frederick MT, Amin VA, Weiss EA (2013) Optical properties of strongly coupled quantum dot-ligand systems. J Phys Chem Lett 4:634–640CrossRefGoogle Scholar
  20. 20.
    Antony JV, Chandran P, Kurian P, Narayanan Vadakkedathu NP, Kochimoolayil GE (2015) Surface effects on photoluminescence and optical nonlinearity of CdS quantum dots stabilized by sulfonated polystyrene in water. J Phys Chem C 119:8280–8289CrossRefGoogle Scholar
  21. 21.
    Mei BC, Wang J, Qiu Q, Heckler T, Petrou A, Mountziaris TJ (2008) Dilution effects on the photoluminescence of ZnSe quantum-dot dispersions. Appl Phys Lett 93:083114CrossRefGoogle Scholar
  22. 22.
    Gaur G, Koktysh DS, Fleetwood DM, Weller RA, Reed RA, Rogers BR, Weiss SM (2016) Influence of ionizing radiation and the role of thiol ligands on the reversible photodarkening of CdTe/CdS quantum dots. ACS Appl Mater Interfaces 8:7869–7876CrossRefGoogle Scholar
  23. 23.
    Hines DA, Kamat PV (2014) Recent advances in quantum dot surface chemistry. ACS Appl Mater Interfaces 6:3041–3057CrossRefGoogle Scholar
  24. 24.
    Hines DA, Kamat PV (2013) Quantum dot surface chemistry: ligand effects and electron transfer reactions. J Phys Chem C 117:14418–14426CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Jiang D, Yang W, Wang D, Zheng H, Du Y, Li X, Li Q (2017) Near-infrared-emitting colloidal Ag2S quantum dots exhibiting upconversion luminescence. Superlattices Microstruct 102:512–516CrossRefGoogle Scholar
  26. 26.
    Sarma R, Mohanta D (2017) Anomalous carrier life-time relaxation mediated by head group interaction in surface anchored MnSe quantum dots conjugated with albumin proteins. Mater Chem Phys 187:46–53CrossRefGoogle Scholar
  27. 27.
    Liu Y-F, Wang L, Shi W-Z, Zhang Y-H, Fang S-M (2014) Synthesis and characterization of chiral Ag2S and Ag2S–Zn nanocrystals. RSC Adv. 4:53142–53148CrossRefGoogle Scholar
  28. 28.
    Wang X, Qu L, Zhang J, Peng X, Xiao AM (2003) Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett 3:1103–1106CrossRefGoogle Scholar
  29. 29.
    Narayanan SS, Pal SK (2007) Aggregated CdS quantum dots: host of biomolecular ligands. J Phys Chem B 110:24403–24409CrossRefGoogle Scholar
  30. 30.
    Azpiroz JM, De Angelis F (2015) Ligand induced spectral changes in CdSe quantum dots. ACS Appl Mater Interfaces 7:19736–19745CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yanyan Zhang
    • 1
  • Jinfeng Xia
    • 2
  • Caixia Li
    • 3
  • Guohong Zhou
    • 2
  • Wei Yang
    • 1
  • Dandan Wang
    • 1
  • Huiping Zheng
    • 1
  • Yuansheng Du
    • 1
  • Xi Li
    • 1
  • Qiang Li
    • 1
    Email author
  1. 1.Department of ChemistryEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  3. 3.Yuxi Normal UniversityYuxiPeople’s Republic of China

Personalised recommendations