Skip to main content
Log in

Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Since the 1970s, palladium-catalysed carbon–carbon (C–C) bond formation has made a critical impact in organic synthesis. In early studies, homogeneous palladium catalysts were extensively used for this reaction with limitations such as difficulty in separation and recycling ability. Lately, heterogeneous palladium-based catalysts have shown promise as surrogates for conventional homogeneous catalysts in C–C coupling reactions, since the product is easy to isolate, while the catalyst is reusable and hence sustainable. Recently, a better part of these heterogeneous palladium catalysts are supported on carbon nanotubes (Pd/CNTs), that have shown superior catalytic performance and better recyclability since the CNT support imparts stability to the palladium catalyst. This review discusses the wide variety of surface functionalization techniques for CNTs that improve their properties as catalyst supports, as well as the methods available for loading the catalyst nanoparticles onto the CNTs. It will survey the literature where Pd/CNTs catalysts have been utilized for C–C coupling reactions, with particular emphasis on Suzuki–Miyaura and Mizoroki–Heck coupling reactions. It will also highlight some of the important parameters that affect these reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jana R, Pathak TP, Sigman MS (2011) Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev 111:1417–1492

    Article  Google Scholar 

  2. Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem Rev 111:1215–1292

    Article  Google Scholar 

  3. Polshettiwar V, Decottignies A, Len C, Fihri A (2010) Suzuki–Miyaura cross-coupling reactions in aqueous media: green and sustainable syntheses of biaryls. Chemsuschem 3:502–522

    Article  Google Scholar 

  4. Shibasaki M, Boden CD, Kojima A (1997) The asymmetric Heck reaction. Tetrahedron 53:7371–7395

    Article  Google Scholar 

  5. Grosso-Giordano NA, Eaton TR, Bo Z, Yacob S, Yang C-C, Notestein JM (2016) Silica support modifications to enhance Pd-catalyzed deoxygenation of stearic acid. Appl Catal B Environ 192:93–100

    Article  Google Scholar 

  6. París RS, L’Abbate ME, Liotta LF, Montes V, Barrientos J, Regali F et al (2016) Hydroconversion of paraffinic wax over platinum and palladium catalysts supported on silica–alumina. Catal Today 275:141–148

    Article  Google Scholar 

  7. Wang C, Wang L, Zhang J, Wang H, Lewis JP, Xiao F-S (2016) Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J Am Chem Soc 138:7880–7883

    Article  Google Scholar 

  8. Giacalone F, Gruttadauria M (2016) Covalently supported ionic liquid phases: an advanced class of recyclable catalytic systems. ChemCatChem 8:664–684

    Article  Google Scholar 

  9. Molnar A (2011) Efficient, selective, and recyclable palladium catalysts in carbon–carbon coupling reactions. Chem Rev 111:2251–2320

    Article  Google Scholar 

  10. Yin L, Liebscher J (2007) Carbon–carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173

    Article  Google Scholar 

  11. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075

    Article  Google Scholar 

  12. Balanta A, Godard C, Claver C (2011) Pd nanoparticles for C–C coupling reactions. Chem Soc Rev 40:4973–4985

    Article  Google Scholar 

  13. Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A Gen 173:259–271

    Article  Google Scholar 

  14. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253:337–358

    Article  Google Scholar 

  15. Ajayan P (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    Article  Google Scholar 

  16. http://images.iop.org/objects/ntw/news/12/2/9/image1.jpg. Accessed 15 Nov 2016

  17. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C 60: buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  18. Aqel A, El-Nour KMA, Ammar RA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian J Chem 5:1–23

    Article  Google Scholar 

  19. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  20. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  21. Ren Z, Huang Z, Xu J, Wang J, Bush P, Siegal M et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107

    Article  Google Scholar 

  22. Thess A, Lee R, Nikolaev P, Dai H (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483

    Article  Google Scholar 

  23. Kukovitskii E, Chernozatonskii L, L’vov S, Mel’nik N (1997) Carbon nanotubes of polyethylene. Chem Phys Lett 266:323–328

    Article  Google Scholar 

  24. Hsu W, Terrones M, Hare J, Terrones H, Kroto H, Walton D (1996) Electrolytic formation of carbon nanostructures. Chem Phys Lett 262:161–166

    Article  Google Scholar 

  25. Richter H, Hernadi K, Caudano R, Fonseca A, Migeon H-N, Nagy JB et al (1996) Formation of nanotubes in low pressure hydrocarbon flames. Carbon 34:427–429

    Article  Google Scholar 

  26. Vander Wal RL, Berger GM, Hall LJ (2002) Single-walled carbon nanotube synthesis via a multi-stage flame configuration. J Phys Chem B 106:3564–3567

    Article  Google Scholar 

  27. Vander Wal RL, Ticich TM (2001) Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J Phys Chem B 105:10249–10256

    Article  Google Scholar 

  28. Chernozatonskii L, Kosakovskaja ZJ, Fedorov E, Panov V (1995) New carbon tubelite-ordered film structure of multilayer nanotubes. Phys Lett A 197:40–46

    Article  Google Scholar 

  29. Yamamoto K, Koga Y, Fujiwara S, Kubota M (1996) New method of carbon nanotube growth by ion beam irradiation. Appl Phys Lett 69:4174–4175

    Article  Google Scholar 

  30. Kyotani T, L-f Tsai, Tomita A (1996) Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater 8:2109–2113

    Article  Google Scholar 

  31. Laplaze D, Bernier P, Maser W, Flamant G, Guillard T, Loiseau A (1998) Carbon nanotubes: the solar approach. Carbon 36:685–688

    Article  Google Scholar 

  32. Liu S, Tang Z-R, Sun Y, Colmenares JC, Xu Y-J (2015) One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev 44:5053–5075

    Article  Google Scholar 

  33. Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831

    Article  Google Scholar 

  34. Jiang Z, Zhang H, Han J, Liu Z, Liu Y, Tang L (2016) Percolation model of reinforcement efficiency for carbon nanotubes dispersed in thermoplastics. Compos Part A Appl Sci Manuf 86:49–56

    Article  Google Scholar 

  35. Son D, Koo JH, Song J-K, Kim J, Lee M, Shim HJ et al (2015) Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics. ACS Nano 9:5585–5593

    Article  Google Scholar 

  36. Xiao J, Pan X, Zhang F, Li H, Bao X (2016) Size-dependence of carbon nanotube confinement in catalysis. Chem Sci. doi:10.1039/C6SC02298G

    Google Scholar 

  37. Planeix J, Coustel N, Coq B, Brotons V, Kumbhar P, Dutartre R et al (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935–7936

    Article  Google Scholar 

  38. Cargnello M, Grzelczak M, Rodríguez-González B, Syrgiannis Z, Bakhmutsky K, La Parola V et al (2012) Multiwalled carbon nanotubes drive the activity of metal@ oxide core–shell catalysts in modular nanocomposites. J Am Chem Soc 134:11760–11766

    Article  Google Scholar 

  39. Lee KM, Li L, Dai L (2005) Asymmetric end-functionalization of multi-walled carbon nanotubes. J Am Chem Soc 127:4122–4123

    Article  Google Scholar 

  40. Jiang L, Gao L (2003) Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles. Carbon 41:2923–2929

    Article  Google Scholar 

  41. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952–1958

    Article  Google Scholar 

  42. Hirsch A, Vostrowsky O (2007) Functionalization of carbon nanotubes. In: Functional organic materials: syntheses, strategies and applications, pp 1–57

  43. Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT, Liu J, Smalley R (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384

    Article  Google Scholar 

  44. Tsang S, Harris P, Green M (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nat Lond 362:520

    Article  Google Scholar 

  45. Peng Y, Liu H (2006) Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind Eng Chem Res 45:6483–6488

    Article  Google Scholar 

  46. Chen C, Liang B, Ogino A, Wang X, Nagatsu M (2009) Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. J Phys Chem C 113:7659–7665

    Article  Google Scholar 

  47. Xia W, Hagen V, Kundu S, Wang Y, Somsen C, Eggeler G et al (2007) Controlled etching of carbon nanotubes by iron-catalyzed steam gasification. Adv Mater 19:3648–3652

    Article  Google Scholar 

  48. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  Google Scholar 

  49. Santangelo S, Messina G, Faggio G, Abdul Rahim S, Milone C (2012) Effect of sulphuric–nitric acid mixture composition on surface chemistry and structural evolution of liquid-phase oxidised carbon nanotubes. J Raman Spectrosc 43:1432–1442

    Article  Google Scholar 

  50. Ramanathan T, Fisher F, Ruoff R, Brinson L (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17:1290–1295

    Article  Google Scholar 

  51. Corma A, Garcia H, Leyva A (2005) Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon: study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation. J Mol Catal A Chem 230:97–105

    Article  Google Scholar 

  52. Tagmatarchis N, Prato M (2004) Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J Mater Chem 14:437–439

    Article  Google Scholar 

  53. Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31:519–526

    Article  Google Scholar 

  54. Rinzler A, Liu J, Dai H, Nikolaev P, Huffman C, Rodriguez-Macias F et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67:29–37

    Article  Google Scholar 

  55. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T et al (1998) Fullerene pipes. Science 280:1253–1256

    Article  Google Scholar 

  56. Mahouche Chergui S, Ledebt A, Mammeri F, Herbst F, Carbonnier B, Ben Romdhane H et al (2010) Hairy carbon nanotube@ nano-pd heterostructures: design, characterization, and application in suzuki C–C coupling reaction. Langmuir 26:16115–16121

    Article  Google Scholar 

  57. Zhang Y, He H, Gao C (2008) Clickable macroinitiator strategy to build amphiphilic polymer brushes on carbon nanotubes. Macromolecules 41:9581–9594

    Article  Google Scholar 

  58. Zhang H, Huang F, Yang C, Liu X, Ren S (2015) Highly dispersed Pd nanoparticles supported on 3-aminopropyltriethoxysilanes modified multiwalled carbon nanotubes for the Heck–Mizoroki reaction. React Kinet Mech Catal 114:489–499

    Article  Google Scholar 

  59. Giacalone F, Campisciano V, Calabrese C, La Parola V, Syrgiannis Z, Prato M, Gruttadauria M (2016) Single-walled carbon nanotube–polyamidoamine dendrimer hybrids for heterogeneous catalysis. ACS Nano 10:4627–4636

    Article  Google Scholar 

  60. Nabid MR, Bide Y, Rezaei SJT (2011) Pd nanoparticles immobilized on PAMAM-grafted MWCNTs hybrid materials as new recyclable catalyst for Mizoraki–Heck cross-coupling reactions. Appl Catal A Gen 406:124–132

    Article  Google Scholar 

  61. Qian Z, Ma J, Zhou J, Lin P, Chen C, Chen J et al (2012) Facile synthesis of halogenated multi-walled carbon nanotubes and their unusual photoluminescence. J Mater Chem 22:22113–22119

    Article  Google Scholar 

  62. Dettlaff-Weglikowska U, Skakalova V, Graupner R, Jhang SH, Kim BH, Lee HJ et al (2005) Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J Am Chem Soc 127:5125–5131

    Article  Google Scholar 

  63. Mickelson E, Huffman C, Rinzler A, Smalley R, Hauge R, Margrave J (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296:188–194

    Article  Google Scholar 

  64. Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W (2002) Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr Appl Phys 2:107–111

    Article  Google Scholar 

  65. Hanelt S, Friedrich JF, Orts-Gil G, Meyer-Plath A (2012) Study of Lewis acid catalyzed chemical bromination and bromoalkylation of multi-walled carbon nanotubes. Carbon 50:1373–1385

    Google Scholar 

  66. Chiou J-M, Ho C, Chung D (1989) Effect of bromination on the oxidation resistance of pitch-based carbon fibers. Carbon 27:227–231

    Article  Google Scholar 

  67. Bulusheva LG, Okotrub AV, Flahaut E, Asanov IP, Gevko PN, Koroteev V et al (2012) Bromination of double-walled carbon nanotubes. Chem Mater 24:2708–2715

    Article  Google Scholar 

  68. Coleman KS, Chakraborty AK, Bailey SR, Sloan J, Alexander M (2007) Iodination of single-walled carbon nanotube. Chem Mater 19:1076–1081

    Article  Google Scholar 

  69. Wang Y, Iqbal Z, Mitra S (2006) Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc 128:95–99

    Article  Google Scholar 

  70. Liang F, Beach JM, Rai PK, Guo W, Hauge RH, Pasquali M et al (2006) Highly exfoliated water-soluble single-walled carbon nanotubes. Chem Mater 18:1520–1524

    Article  Google Scholar 

  71. Duesberg GS, Graupner R, Downes P, Minett A, Ley L, Roth S et al (2004) Hydrothermal functionalisation of single-walled carbon nanotubes. Synth Met 142:263–266

    Article  Google Scholar 

  72. Hara M, Yoshida T, Takagaki A, Takata T, Kondo JN, Hayashi S et al (2004) A carbon material as a strong protonic acid. Angew Chem Int Ed 43:2955–2958

    Article  Google Scholar 

  73. Wang H, Yu H, Peng F, Lv P (2006) Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts. Electrochem Commun 8:499–504

    Article  Google Scholar 

  74. Yu H, Jin Y, Li Z, Peng F, Wang H (2008) Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst. J Solid State Chem 181:432–438

    Article  Google Scholar 

  75. Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cell using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed Eng 47:2653–2656

    Article  Google Scholar 

  76. Peng F, Zhang L, Wang H, Lv P, Yu H (2005) Sulfonated carbon nanotubes as a strong protonic acid catalyst. Carbon 43:2405–2408

    Article  Google Scholar 

  77. Sun Z-P, Zhang X-G, Liu R-L, Liang Y-Y, Li H-L (2008) A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation. J Power Sources 185:801–806

    Article  Google Scholar 

  78. Boehm H, Derincon A, Stohr T, Tereczki B, Vass A (1987) Activation of carbon catalysts for oxidation reactions by treatment with ammonia or hydrogen-cyanide, and possible causes for the loss of activity during catalytic action. J Chim Phys Phys Chim Biol 84:1449–1455

    Google Scholar 

  79. Choi J, Samayoa IA, Lim S-C, Jo C, Choi YC, Lee YH et al (2002) Band filling and correlation effects in alkali metal doped carbon nanotubes. Phys Lett A 299:601–606

    Article  Google Scholar 

  80. Jin Z, Nie H, Yang Z, Zhang J, Liu Z, Xu X et al (2012) Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale 4:6455–6460

    Article  Google Scholar 

  81. Yu D, Xue Y, Dai L (2012) Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J Phys Chem Lett 3:2863–2870

    Article  Google Scholar 

  82. Sumpter BG, Meunier V, Romo-Herrera JM, Cruz-Silva E, Cullen DA, Terrones H et al (2007) Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano 1:369–375

    Article  Google Scholar 

  83. Kang HS, Jeong S (2004) Nitrogen doping and chirality of carbon nanotubes. Phys Rev B 70:233411

    Article  Google Scholar 

  84. Glerup M, Steinmetz J, Samaille D, Stephan O, Enouz S, Loiseau A et al (2004) Synthesis of N-doped SWCNT using the arc-discharge procedure. Chem Phys Lett 387:193–197

    Article  Google Scholar 

  85. Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T et al (2010) Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Appl Catal A Gen 380:72–80

    Article  Google Scholar 

  86. Vinayan B, Sethupathi K, Ramaprabhu S (2013) Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications. Int J Hydrog Energy 38:2240–2250

    Article  Google Scholar 

  87. Lee YT, Kim NS, Bae SY, Park J, Yu S-C, Ryu H et al (2003) Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900–1100 °C. J Phys Chem B 107:12958–12963

    Article  Google Scholar 

  88. Nxumalo EN, Nyamori VO, Coville NJ (2008) CVD synthesis of nitrogen doped carbon nanotubes using ferrocene/aniline mixture. J Organomet Chem 693:2942–2948

    Article  Google Scholar 

  89. Sen R, Satishkumar B, Govindaraj A, Harikumar K, Renganathan M, Rao C (1997) Nitrogen-containing carbon nanotubes. J Mater Chem 7:2335–2337

    Article  Google Scholar 

  90. Trasobares S, Stephan O, Colliex C, Hug G, Hsu W, Kroto H et al (2001) Electron beam puncturing of carbon nanotube containers for release of stored N2 gas. Euro Phys J B Condens Matter Complex Syst 22:117–122

    Google Scholar 

  91. Li Z, Liu J, Huang Z, Yang Y, Xia C, Li F (2013) One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation. ACS Catal 3:839–845

    Article  Google Scholar 

  92. Yoon H, Ko S, Jang J (2007) Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. Chem Commun 14:1468–1470

    Article  Google Scholar 

  93. Liu C-H, Li J-J, Zhang H-L, Li B-R, Guo Y (2008) Structure dependent interaction between organic dyes and carbon nanotubes. Colloids Surf A Physicochem Eng Asp 313:9–12

    Article  Google Scholar 

  94. Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc 124:9034–9035

    Article  Google Scholar 

  95. Tunckol M, Fantini S, Malbosc F, Durand J, Serp P (2013) Effect of the synthetic strategy on the non-covalent functionalization of multi-walled carbon nanotubes with polymerized ionic liquids. Carbon 57:209–216

    Article  Google Scholar 

  96. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063

    Article  Google Scholar 

  97. Zhang A, Tang M, Luan J, Li J (2012) Noncovalent functionalization of multi-walled carbon nanotubes with amphiphilic polymers containing pyrene pendants. Mater Lett 67:283–285

    Article  Google Scholar 

  98. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Article  Google Scholar 

  99. Zhang LY, Guo CX, Cui Z, Guo J, Dong Z, Li CM (2012) DNA-directed growth of Pd nanocrystals on carbon nanotubes towards efficient oxygen reduction reactions. Chem A Eur J 18:15693–15698

    Article  Google Scholar 

  100. Simmons TJ, Bult J, Hashim DP, Linhardt RJ, Ajayan PM (2009) Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. ACS Nano 3:865–870

    Article  Google Scholar 

  101. Zheng M, Li P, Fu G, Chen Y, Zhou Y, Tang Y et al (2013) Efficient anchorage of highly dispersed and ultrafine palladium nanoparticles on the water-soluble phosphonate functionalized multiwall carbon nanotubes. Appl Catal B Environ 129:394–402

    Article  Google Scholar 

  102. Wu H, Zhao W, Hu H, Chen G (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626–8632

    Article  Google Scholar 

  103. Buaki-Sogó M, Vivian A, Bivona L, García H, Gruttadauria M, Aprile C (2016) Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catal Sci Technol 6:8418–8427

    Article  Google Scholar 

  104. Salvo AMP, La Parola V, Liotta LF, Giacalone F, Gruttadauria M (2016) Highly loaded multi-walled carbon nanotubes non-covalently modified with a bis-imidazolium salt and their use as catalyst supports. ChemPlusChem 81:471–476

    Article  Google Scholar 

  105. Suzuki Y, Laurino P, McQuade DT, Seeberger PH (2012) A capture-and-release catalytic flow system. Helv Chim Acta 95:2578–2588

    Article  Google Scholar 

  106. Stevens PD, Li G, Fan J, Yen M, Gao Y (2005) Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem Commun 35:4435–4437

    Article  Google Scholar 

  107. Villa A, Wang D, Spontoni P, Arrigo R, Su D, Prati L (2010) Nitrogen functionalized carbon nanostructures supported Pd and Au–Pd NPs as catalyst for alcohols oxidation. Catal Today 157:89–93

    Article  Google Scholar 

  108. Liu JM, Meng H, Jl Li, Liao Sj BuJH (2007) Preparation of high performance Pt/CNT catalysts stabilized by ethylenediaminetetraacetic acid disodium salt. Fuel Cells 7:402–407

    Article  Google Scholar 

  109. Hou T, Yuan L, Ye T, Gong L, Tu J, Yamamoto M et al (2009) Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst. Int J Hydrog Energy 34:9095–9107

    Article  Google Scholar 

  110. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  Google Scholar 

  111. Gu X, Qi W, Xu X, Sun Z, Zhang L, Liu W et al (2014) Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 6:6609–6616

    Article  Google Scholar 

  112. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193

    Article  Google Scholar 

  113. Lee J, Lee K, Park SS (2016) Environmentally friendly preparation of nanoparticle-decorated carbon nanotube or graphene hybrid structures and their potential applications. J Mater Sci 51:2761–2770

    Article  Google Scholar 

  114. Villa A, Wang D, Dimitratos N, Su D, Trevisan V, Prati L (2010) Pd on carbon nanotubes for liquid phase alcohol oxidation. Catal Today 150:8–15

    Article  Google Scholar 

  115. Gao C, Guo Z, Liu J-H, Huang X-J (2012) The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4:1948–1963

    Article  Google Scholar 

  116. Qiu J, Zhang H, Wang X, Han H, Liang C, Li C (2006) Selective hydrogenation of cinnamaldehyde over carbon nanotube supported Pd–Ru catalyst. React Kinet Catal Lett 88:269–276

    Article  Google Scholar 

  117. Ji X, Banks CE, Holloway AF, Jurkschat K, Thorogood CA, Wildgoose GG et al (2006) Palladium sub-nanoparticle decorated ‘bamboo’multi-walled carbon nanotubes exhibit electrochemical metastability: voltammetric sensing in otherwise inaccessible pH ranges. Electroanalysis 18:2481–2485

    Article  Google Scholar 

  118. Li X, Niu J, Zhang J, Li H, Liu Z (2003) Labeling the defects of single-walled carbon nanotubes using titanium dioxide nanoparticles. J Phys Chem B 107:2453–2458

    Article  Google Scholar 

  119. Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K et al (2009) Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J Power Sources 194:1202–1207

    Article  Google Scholar 

  120. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216

    Article  Google Scholar 

  121. Yoon B, Wai CM (2005) Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. J Am Chem Soc 127:17174–17175

    Article  Google Scholar 

  122. Wu B, Kuang Y, Zhang X, Chen J (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6:75–90

    Article  Google Scholar 

  123. Quinn BM, Dekker C, Lemay SG (2005) Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:6146–6147

    Article  Google Scholar 

  124. Laborde H, Leger J, Lamy C (1994) Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part II: platinum-ruthenium in polyaniline. J Appl Electrochem 24:1019–1027

    Google Scholar 

  125. Ebbesen TW, Hiura H, Bisher ME, Treacy MM, Shreeve-Keyer JL, Haushalter RC (1996) Decoration of carbon nanotubes. Adv Mater 8:155–157

    Article  Google Scholar 

  126. Cui S-K, Guo D-J (2009) Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. J Colloid Interface Sci 333:300–303

    Article  Google Scholar 

  127. Tsai M-C, Yeh T-K, Tsai C-H (2008) Electrodeposition of platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloths for methanol oxidation. Mater Chem Phys 109:422–428

    Article  Google Scholar 

  128. Schlesinger M, Kisel J (1989) Effect of Sn(II)-based sensitizer adsorption in electroless deposition. J Electrochem Soc 136:1658–1661

    Article  Google Scholar 

  129. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K et al (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  Google Scholar 

  130. Lin K-Y, Tsai W-T, Chang J-K (2010) Decorating carbon nanotubes with Ni particles using an electroless deposition technique for hydrogen storage applications. Int J Hydrog Energy 35:7555–7562

    Article  Google Scholar 

  131. Chen X, Hou Y, Wang H, Cao Y, He J (2008) Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions. J Phys Chem C 112:8172–8176

    Article  Google Scholar 

  132. Sokolov V, Rakov E, Bumagin N, Vinogradov M (2010) New method to prepare nanopalladium clusters immobilized on carbon nanotubes: a very efficient catalyst for forming carbon–carbon bonds and hydrogenation. Fuller Nanotubes Carbon Nanostruct 18:558–563

    Article  Google Scholar 

  133. Li Y, Hu FP, Wang X, Shen PK (2008) Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts. Electrochem Commun 10:1101–1104

    Article  Google Scholar 

  134. Xu H, Zeng L, Xing S, Shi G, Xian Y, Jin L (2008) Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). Electrochem Commun 10:1839–1843

    Article  Google Scholar 

  135. Lepró X, Terrés E, Vega-Cantú Y, Rodríguez-Macías FJ, Muramatsu H, Kim YA et al (2008) Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. Chem Phys Lett 463:124–129

    Article  Google Scholar 

  136. Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V et al (2009) PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim Acta 54:4208–4215

    Article  Google Scholar 

  137. Jiang S, Zhu L, Ma Y, Wang X, Liu J, Zhu J et al (2010) Direct immobilization of Pt–Ru alloy nanoparticles on nitrogen-doped carbon nanotubes with superior electrocatalytic performance. J Power Sources 195:7578–7582

    Article  Google Scholar 

  138. Vanyorek L, Halasi G, Pekker P, Kristály F, Kónya Z (2016) Characterization and catalytic activity of different carbon supported Pd nanocomposites. Catal Lett 146:2268–2277

    Article  Google Scholar 

  139. Kim JY, Jo Y, Lee S, Choi HC (2009) Synthesis of Pd–CNT nanocomposites and investigation of their catalytic behavior in the hydrodehalogenation of aryl halides. Tetrahedron Lett 50:6290–6292

    Article  Google Scholar 

  140. Chen L, Hu G, Zou G, Shao S, Wang X (2009) Efficient anchorage of Pd nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Electrochem Commun 11:504–507

    Article  Google Scholar 

  141. Lozano P, García-Verdugo E, Bernal JM, Izquierdo DF, Burguete MI, Sánchez-Gómez G et al (2012) Immobilised lipase on structured supports containing covalently attached ionic liquids for the continuous synthesis of biodiesel in scCO2. Chemsuschem 5:790–798

    Article  Google Scholar 

  142. Duan Y, Li J (2004) Structure study of nickel nanoparticles. Mater Chem Phys 87:452–454

    Article  Google Scholar 

  143. Soin N, Roy S, Karlsson L, McLaughlin J (2010) Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material. Diam Relat Mater 19:595–598

    Article  Google Scholar 

  144. Baba K, Kaneko T, Hatakeyama R, Motomiya K, Tohji K (2009) Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields. Chem Commun 46:255–257

    Article  Google Scholar 

  145. Wang H, Sun X, Ye Y, Qiu S (2006) Radiation induced synthesis of Pt nanoparticles supported on carbon nanotubes. J Power Sources 161:839–842

    Article  Google Scholar 

  146. Hierso J-C, Feurer R, Kalck P (1998) Platinum, palladium and rhodium complexes as volatile precursors for depositing materials. Coord Chem Rev 178:1811–1834

    Article  Google Scholar 

  147. Jones AC (2002) Molecular design of improved precursors for the MOCVD of electroceramic oxides. J Mater Chem 12:2576–2590

    Article  Google Scholar 

  148. Jones AC, Aspinall HC, Chalker PR, Potter RJ, Kukli K, Rahtu A et al (2004) Some recent developments in the MOCVD and ALD of high-K dielectric oxides. J Mater Chem 14:3101–3112

    Article  Google Scholar 

  149. Siamaki AR, Lin Y, Woodberry K, Connell JW, Gupton BF (2013) Palladium nanoparticles supported on carbon nanotubes from solventless preparations: versatile catalysts for ligand-free Suzuki cross coupling reactions. J Mater Chem A 1:12909–12918

    Article  Google Scholar 

  150. Cano M, Benito AM, Maser WK, Urriolabeitia EP (2009) Formation of multiwalled carbon nanotube-Pd nanoparticle nanocomposites: influence of the reaction media and applications on catalyzed C–C coupling. http://www.carbon2009.org/congress/programme/. Accessed 11 July 2015

  151. Ye X-R, Lin Y, Wang C, Engelhard MH, Wang Y, Wai CM (2004) Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J Mater Chem 14:908–913

    Article  Google Scholar 

  152. Star A, Joshi V, Skarupo S, Thomas D, Gabriel J-CP (2006) Gas sensor array based on metal-decorated carbon nanotubes. J Phys Chem B 110:21014–21020

    Article  Google Scholar 

  153. Anson A, Lafuente E, Urriolabeitia E, Navarro R, Benito AM, Maser WK et al (2006) Hydrogen capacity of palladium-loaded carbon materials. J Phys Chem B 110:6643–6648

    Article  Google Scholar 

  154. Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Nonenzymatic electrochemical detection of glucose based on palladium—single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280

    Article  Google Scholar 

  155. Xiang RY, Lin Y, Wai CM (2003) Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem Commun 9:642–643

    Google Scholar 

  156. Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G et al (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299

    Article  Google Scholar 

  157. Pan HB, Yen CH, Yoon B, Sato M, Wai CM (2006) Recyclable and ligandless Suzuki coupling catalyzed by carbon nanotube-supported palladium nanoparticles synthesized in supercritical fluid. Synth Commun 36:3473–3478

    Article  Google Scholar 

  158. Zhang A, Dong J, Xu Q, Rhee H, Li X (2004) Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. Catal Today 93:347–352

    Article  Google Scholar 

  159. Zhao J, Zhu M, Zheng M, Tang Y, Chen Y, Lu T (2011) Electrocatalytic oxidation and detection of hydrazine at carbon nanotube-supported palladium nanoparticles in strong acidic solution conditions. Electrochim Acta 56:4930–4936

    Article  Google Scholar 

  160. Ohtaka A, Sansano JM, Nájera C, Miguel-García I, Berenguer-Murcia Á, Cazorla-Amorós D (2015) Palladium and bimetallic palladium–nickel nanoparticles supported on multiwalled carbon nanotubes: application to carbon–carbon bond-forming reactions in water. ChemCatChem 7:1841–1847

    Article  Google Scholar 

  161. Winjobi O, Zhang Z, Liang C, Li W (2010) Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim Acta 55:4217–4221

    Article  Google Scholar 

  162. Suzuki A (1999) Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J Organomet Chem 576:147–168

    Article  Google Scholar 

  163. Knowles JP, Whiting A (2007) The Heck–Mizoroki cross-coupling reaction: a mechanistic perspective. Org Biomol Chem 5:31–44

    Article  Google Scholar 

  164. Dieck H, Heck R-F (1974) Organophosphinepalladium complexes as catalysts for vinylic hydrogen substitution reactions. J Am Chem Soc 96:1133–1136

    Article  Google Scholar 

  165. Zhang P-P, Zhang X-X, Sun H-X, Liu R-H, Wang B, Lin Y-H (2009) Pd–CNT-catalyzed ligandless and additive-free heterogeneous Suzuki–Miyaura cross-coupling of arylbromides. Tetrahedron Lett 50:4455–4458

    Article  Google Scholar 

  166. Zhang H, Kwong FY, Tian Y, Chan KS (1998) Base and cation effects on the Suzuki cross-coupling of bulky arylboronic acid with halopyridines: synthesis of pyridylphenols. J Org Chem 63:6886–6890

    Article  Google Scholar 

  167. Adib M, Karimi-Nami R, Veisi H (2016) Palladium NPs supported on novel imino-pyridine-functionalized MWCNTs: efficient and highly reusable catalysts for the Suzuki–Miyaura and Sonogashira coupling reactions. New J Chem 40:4945–4951

    Article  Google Scholar 

  168. LeBlond CR, Andrews AT, Sun Y, Sowa JR (2001) Activation of aryl chlorides for Suzuki cross-coupling by ligandless, heterogeneous palladium. Org Lett 3:1555–1557

    Article  Google Scholar 

  169. Zhang L, Dong W-H, Shang N-Z, Feng C, Gao S-T, Wang C (2015) N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction. Chin Chem Lett 27:149–154

    Article  Google Scholar 

  170. Veisi H, Khazaei A, Safaei M, Kordestani D (2014) Synthesis of biguanide-functionalized single-walled carbon nanotubes (SWCNTs) hybrid materials to immobilized palladium as new recyclable heterogeneous nanocatalyst for Suzuki–Miyaura coupling reaction. J Mol Catal A Chem 382:106–113

    Article  Google Scholar 

  171. Budroni G, Corma A, García H, Primo A (2007) Pd nanoparticles embedded in sponge-like porous silica as a Suzuki–Miyaura catalyst: similarities and differences with homogeneous catalysts. J Catal 251:345–353

    Article  Google Scholar 

  172. Richardson JM, Jones CW (2006) Poly(4-vinylpyridine) and Quadrapure TU as selective poisons for soluble catalytic species in palladium-catalyzed coupling reactions–application to leaching from polymer-entrapped palladium. Adv Synth Catal 348:1207–1216

    Article  Google Scholar 

  173. Weck M, Jones CW (2007) Mizoroki–Heck coupling using immobilized molecular precatalysts: leaching active species from Pd pincers, entrapped Pd salts, and Pd NHC complexes. Inorg Chem 46:1865–1875

    Article  Google Scholar 

  174. Navidi M, Rezaei N, Movassagh B (2013) Palladium(II)–Schiff base complex supported on multi-walled carbon nanotubes: a heterogeneous and reusable catalyst in the Suzuki–Miyaura and copper-free Sonogashira–Hagihara reactions. J Organomet Chem 743:63–69

    Article  Google Scholar 

  175. Durap F, Rakap M, Aydemir M, Özkar S (2010) Room temperature aerobic Suzuki cross-coupling reactions in DMF/water mixture using zeolite confined palladium (0) nanoclusters as efficient and recyclable catalyst. Appl Catal A Gen 382:339–344

    Article  Google Scholar 

  176. Zhang L, Feng C, Gao S, Wang Z, Wang C (2015) Palladium nanoparticle supported on metal–organic framework derived N-decorated nanoporous carbon as an efficient catalyst for the Suzuki coupling reaction. Catal Commun 61:21–25

    Article  Google Scholar 

  177. Sullivan JA, Flanagan KA, Hain H (2009) Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite. Catal Today 145:108–113

    Article  Google Scholar 

  178. Jawale DV, Gravel E, Boudet C, Shah N, Geertsen V, Li H et al (2015) Room temperature Suzuki coupling of aryl iodides, bromides, and chlorides using a heterogeneous carbon nanotube-palladium nanohybrid catalyst. Catal Sci Technol 5:2388–2392

    Article  Google Scholar 

  179. Tagata T, Nishida M (2003) Palladium charcoal-catalyzed Suzuki–Miyaura coupling to obtain arylpyridines and arylquinolines. J Org Chem 68:9412–9415

    Article  Google Scholar 

  180. Radtke M, Stumpf S, Schröter B, Höppener S, Schubert US, Ignaszak A (2015) Electrodeposited palladium on MWCNTs as ‘semi-soluble heterogeneous’ catalyst for cross-coupling reactions. Tetrahedron Lett 56:4084–4087

    Article  Google Scholar 

  181. Hajipour AR, Khorsandi Z (2016) Immobilized Pd on (S)-methyl histidinate-modified multi-walled carbon nanotubes: a powerful and recyclable catalyst for Mizoroki–Heck and Suzuki–Miyaura C–C cross-coupling reactions in green solvents and under mild conditions. Appl Organomet Chem 5:256–261

    Article  Google Scholar 

  182. Köhler K, Heidenreich RG, Krauter JG, Pietsch J (2002) Highly active palladium/activated carbon catalysts for Heck reactions: correlation of activity, catalyst properties, and Pd leaching. Chem A Eur J 8:622–631

    Article  Google Scholar 

  183. Carino EV, Knecht MR, Crooks RM (2009) Quantitative analysis of the stability of Pd dendrimer-encapsulated nanoparticles. Langmuir 25:10279–10284

    Article  Google Scholar 

  184. Davies IW, Matty L, Hughes DL, Reider PJ (2001) Are heterogeneous catalysts precursors to homogeneous catalysts? J Am Chem Soc 123:10139–10140

    Article  Google Scholar 

  185. Thathagar MB, ten Elshof JE, Rothenberg G (2006) Pd nanoclusters in C–C coupling reactions: proof of leaching. Angew Chem Int Ed 45:2886–2890

    Article  Google Scholar 

  186. Zhang H, Lancelot C, Chu W, Hong J, Khodakov AY, Chernavskii PA et al (2009) The nature of cobalt species in carbon nanotubes and their catalytic performance in Fischer–Tropsch reaction. J Mater Chem 19:9241–9249

    Article  Google Scholar 

  187. Cornelio B, Saunders AR, Solomonsz WA, Laronze-Cochard M, Fontana A, Sapi J et al (2015) Palladium nanoparticles in catalytic carbon nanoreactors: the effect of confinement on Suzuki–Miyaura reactions. J Mater Chem A 3:3918–3927

    Article  Google Scholar 

  188. Eder D (2010) Carbon nanotube–inorganic hybrids. Chem Rev 110:1348–1385

    Article  Google Scholar 

  189. Heidenreich RG, Koehler K, Krauter JG, Pietsch J (2002) Pd/C as a highly active catalyst for Heck, Suzuki and Sonogashira reactions. Synlett 33:1118–1122

    Article  Google Scholar 

  190. Organ MG, Mayer S (2003) Synthesis of 4-(5-iodo-3-methylpyrazolyl) phenylsulfonamide and its elaboration to a COX II inhibitor library by solution-phase Suzuki coupling using Pd/C as a solid-supported catalyst. J Comb Chem 5:118–124

    Article  Google Scholar 

  191. Movahed SK, Dabiri M, Bazgir A (2014) Palladium nanoparticle decorated high nitrogen-doped graphene with high catalytic activity for Suzuki–Miyaura and Ullmann-type coupling reactions in aqueous media. Appl Catal A Gen 488:265–274

    Article  Google Scholar 

  192. Ghorbani-Vaghei R, Hemmati S, Hashemi M, Veisi H (2015) Diethylenetriamine-functionalized single-walled carbon nanotubes (SWCNTs) to immobilization palladium as a novel recyclable heterogeneous nanocatalyst for the Suzuki–Miyaura coupling reaction in aqueous media. C R Chim 18:636–643

    Article  Google Scholar 

  193. Zhong L, Chokkalingam A, Cha WS, Lakhi KS, Su X, Lawrence G et al (2015) Pd nanoparticles embedded in mesoporous carbon: a highly efficient catalyst for Suzuki–Miyaura reaction. Catal Today 243:195–198

    Article  Google Scholar 

  194. Hussain N, Borah A, Darabdhara G, Gogoi P, Azhagan VK, Shelke MV et al (2015) A green approach for the decoration of Pd nanoparticles on graphene nanosheets: an in situ process for the reduction of C–C double bonds and a reusable catalyst for the Suzuki cross-coupling reaction. New J Chem 39:6631–6641

    Article  Google Scholar 

  195. Singh AS, Patil UB, Nagarkar JM (2013) Palladium supported on zinc ferrite: a highly active, magnetically separable catalyst for ligand free Suzuki and Heck coupling. Catal Commun 35:11–16

    Article  Google Scholar 

  196. Kryukov AY, Davydov SY, Izvol’skii IM, Rakov EG, Abramova NV, Sokolov VI (2012) Palladium supported on graphene-like carbon: preparation and catalytic properties. Mendeleev Commun 22:237–238

    Article  Google Scholar 

  197. Yuan H, Liu H, Zhang B, Zhang L, Wang H, Su DS (2014) A Pd/CNT–SiC monolith as a robust catalyst for Suzuki coupling reactions. Phys Chem Chem Phys 16:11178–11181

    Article  Google Scholar 

  198. Makhubela BC, Jardine A, Smith GS (2011) Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki–Miyaura and Heck cross-coupling reactions. Appl Catal A Gen 393:231–241

    Article  Google Scholar 

  199. Ay AN, Abramova NV, Konuk D, Lependina OL, Sokolov VI, Zümreoglu-Karan B (2013) Magnetically-recoverable Pd-immobilized layered double hydroxide–iron oxide nanocomposite catalyst for carbon–carbon cross-coupling reactions. Inorg Chem Commun 27:64–68

    Article  Google Scholar 

  200. Chen F, Huang M, Li Y (2014) Synthesis of a novel cellulose microencapsulated palladium nanoparticle and its catalytic activities in Suzuki–Miyaura and Mizoroki–Heck reactions. Ind Eng Chem Res 53:8339–8345

    Article  Google Scholar 

  201. Yang F, Chi C, Dong S, Wang C, Jia X, Ren L et al (2015) Pd/PdO nanoparticles supported on carbon nanotubes: a highly effective catalyst for promoting Suzuki reaction in water. Catal Today 256:186–192

    Article  Google Scholar 

  202. Kim E, Jeong HS, Kim BM (2014) Studies on the functionalization of MWNTs and their application as a recyclable catalyst for C–C bond coupling reactions. Catal Commun 46:71–74

    Article  Google Scholar 

  203. H-q Song, Zhu Q, X-j Zheng, X-g Chen (2015) One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: an efficient recyclable catalyst for Suzuki coupling reactions. J Mater Chem A 3:10368–10377

    Article  Google Scholar 

  204. Shiri L, Ghorbani-Choghamarani A, Kazemi M (2016) Sulfides Synthesis: nanocatalysts in C–S cross-coupling reactions. Aust J Chem 69:585–600

    Article  Google Scholar 

  205. Taladriz-Blanco P, Hervés P, Pérez-Juste J (2013) Supported Pd nanoparticles for carbon–carbon coupling reactions. Top Catal 56:1154–1170

    Article  Google Scholar 

  206. Eremin DB, Ananikov VP (2017) Understanding active species in catalytic transformations: from molecular catalysis to nanoparticles, leaching, “cocktails” of catalysts and dynamic systems. Coord Chem Rev. doi:10.1016/J.CCR.2016.12.021

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF) of South Africa and the University of KwaZulu-Natal (UKZN) Nanotechnology Platform Initiative. The authors are grateful to Mr Eric Njogu and Mr Adesuji Elijah Temitope for their contribution to the development of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent O. Nyamori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labulo, A.H., Martincigh, B.S., Omondi, B. et al. Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions. J Mater Sci 52, 9225–9248 (2017). https://doi.org/10.1007/s10853-017-1128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1128-0

Keywords

Navigation