Skip to main content

Advertisement

Log in

Synergetic effect of synthesized sulfonated polyaniline/quaternized graphene and its application as a high-performance supercapacitor electrode

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new hybrid sulfonated polyaniline/quaternized graphene (s-PANINa/q-graphene) is prepared by electrostatic and π–π interactions between positively charged quaternized graphene (q-graphene) and negatively charged sulfonated polyaniline (s-PANINa). The introduction of the s-PANINa into the q-graphene sheets leads to the formation of nanohybrid with layered morphology and high electrical conductivity. The electrochemical performance of s-PANINa/q-graphene nanohybrid as an electrode material for supercapacitors application is evaluated using cyclic voltammetry and galvanostatic charge/discharge tests in 1.0 M of H2SO4 as an electrolyte. The maximum capacitance of 682 F g−1 is obtained for s-PANINa/q-graphene nanohybrid at the current density of 1.0 A g−1. 70.0% retention of the initial specific capacitance (from current density of 1.0–30 A g−1), which indicates the excellent rate capability and consequently high power characteristics of s-PANINa/q-graphene nanohybrid. Moreover, the proposed nanohybrid shows an excellent stability (less than 5% drop after 2000 cycles) with about 100% of coulombic efficiency. The improved electrochemical performance because of the synergistic effects between q-graphene and the s-PANINa indicates that nanohybrid is a good candidate for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Rahman AH, Majid MS, Rezaee Jordehi A, Chin Kim G, Hassan MY, Fadhl OS (2015) Operation and control strategies of integrated distributed energy resources: a review. Renew Sustain Energy Rev 51:1412–1420

    Article  Google Scholar 

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  Google Scholar 

  3. Zuliani JE, Caguiat JN, Kirk DW, Jia CQ (2015) Considerations for consistent characterization of electrochemical double-layer capacitor performance. J Power Sources 290:136–143

    Article  Google Scholar 

  4. Yang Y, Ren S, Ma S, Hao C, Ji M (2015) Hollow tin dioxide microspheres with multilayered nanocrystalline shells for pseudocapacitor. Electrochim Acta 155:437–446

    Article  Google Scholar 

  5. Mu B, Zhang W, Xu W, Wang A (2015) Hollowed-out tubular carbon@ MnO2 hybrid composites with controlled morphology derived from kapok fibers for supercapacitor electrode materials. Electrochim Acta 178:709–720

    Article  Google Scholar 

  6. Wang J, Ma R, Zhou Z, Liu G, Liu Q (2015) Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction. Sci Rep 5:9304

    Article  Google Scholar 

  7. Li M, Cheng JP, Liu F, Zhang XB (2015) In situ growth of nickel-cobalt oxyhydroxide/oxide on carbon nanotubes for high performance supercapacitors. Electrochim Acta 178:439–446

    Article  Google Scholar 

  8. Su Y, Zhitomirsky I (2015) Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes. Appl Energy 153:48–55

    Article  Google Scholar 

  9. Huang K-J, Wang L, Zhang J-Z, Xing K (2015) Synthesis of molybdenum disulfide/carbon aerogel composites for supercapacitors electrode material application. J Electroanal Chem 752:33–40

    Article  Google Scholar 

  10. Shao Z, Li H, Li M, Li C, Qu C, Yang B (2015) Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors. Energy 87:578–585

    Article  Google Scholar 

  11. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  Google Scholar 

  12. Shen K, Ran F, Zhang X, Liu C, Wang N, Niu X, Liu Y, Zhang D, Kong L, Kang L, Chen S (2015) Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers. Synth Met 209:369–376

    Article  Google Scholar 

  13. Zhang X, Zhang H, Li C, Wang K, Sun X, Ma Y (2014) Recent advances in porous graphene materials for supercapacitor applications. RSC Adv 4(86):45862–45884

    Article  Google Scholar 

  14. Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22(20):5667–5671

    Article  Google Scholar 

  15. Sun D, Jin L, Chen Y, Zhang JR, Zhu JJ (2013) Microwave-assisted in situ synthesis of graphene/PEDOT hybrid and its application in supercapacitors. ChemPlusChem 78(3):227–234

    Article  Google Scholar 

  16. Kim M, Lee C, Jang J (2014) Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Funct Mater 24(17):2489–2499

    Article  Google Scholar 

  17. Song B, Li L, Lin Z, Wu Z-K, K-s Moon, Wong C-P (2015) Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy 16:470–478

    Article  Google Scholar 

  18. Cao H, Zhou X, Zhang Y, Chen L, Liu Z (2013) Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors. J Power Sources 243:715–720

    Article  Google Scholar 

  19. Tamai H, Hakoda M, Shiono T, Yasuda H (2007) Preparation of polyaniline coated activated carbon and their electrode performance for supercapacitor. J Mater Sci 42(4):1293–1298. doi:10.1007/s10853-006-1059-7

    Article  Google Scholar 

  20. Zhao HB, Yang J, Lin TT, Lü QF, Chen G (2015) Nanocomposites of sulfonic polyaniline nanoarrays on graphene nanosheets with an improved supercapacitor performance. Chem A Eur J 21(2):682–690

    Article  Google Scholar 

  21. Jianhua L, Junwei A, Yecheng Z, Yuxiao M, Mengliu L, Mei Y, Songmei L (2012) Preparation of an amide group-connected graphene-polyaniline nanofiber hybrid and its application in supercapacitors. ACS Appl Mater Interfaces 4(6):2870–2876

    Article  Google Scholar 

  22. Zuo Z, Li W, Manthiram A (2013) N-heterocycles tethered graphene as efficient metal-free catalysts for an oxygen reduction reaction in fuel cells. J Mater Chem A 1(35):10166–10172

    Article  Google Scholar 

  23. Luo J, Chen Y, Ma Q, Liu R, Liu X (2014) Layer-by-layer assembled ionic-liquid functionalized graphene–polyaniline nanocomposite with enhanced electrochemical sensing properties. J Mater Chem C 2(24):4818–4827

    Article  Google Scholar 

  24. Dimiev A, Kosynkin DV, Alemany LB, Chaguine P, Tour JM (2012) Pristine graphite oxide. J Am Chem Soc 134(5):2815–2822

    Article  Google Scholar 

  25. Ansari MO, Khan MM, Ansari SA, Amal I, Lee J, Cho MH (2014) pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem Eng J 242:155–161

    Article  Google Scholar 

  26. Fan T, Tong S, Zeng W, Niu Q, Liu Y, Kao C-Y, Liu J, Huang W, Min Y, Epstein AJ (2015) Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. Synth Met 199:79–86

    Article  Google Scholar 

  27. Ai W, Zhou W, Du Z, Du Y, Zhang H, Jia X, Xie L, Yi M, Yu T, Huang W (2012) Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. J Mater Chem 22(44):23439–23446

    Article  Google Scholar 

  28. Chen S-A, Hwang G-W (1996) Structure characterization of self-acid-doped sulfonic acid ring-substituted polyaniline in its aqueous solutions and as solid film. Macromolecules 29(11):3950–3955

    Article  Google Scholar 

  29. Agrawalla RK, Paul S, Sahoo PK, Chakraborty AK, Mitra AK (2015) A facile synthesis of a novel three phase nanocomposite: Single wall carbon nanotube/silver nanohybrid fibers embedded in sulfonated polyaniline. J Appl Polymer Sci 132(12):41692

    Google Scholar 

  30. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid state Commun 143(1–2):47–57

    Article  Google Scholar 

  31. Liang B, Qin Z, Li T, Dou Z, Zeng F, Cai Y, Zhu M, Zhou Z (2015) Poly(aniline-co-pyrrole) on the surface of reduced graphene oxide as high-performance electrode materials for supercapacitors. Electrochimica Acta 177:335–342

    Article  Google Scholar 

  32. Xu T, Xin M, Li M, Huang H, Zhou S, Liu J (2011) Synthesis, characterization, and antibacterial activity of N, O-quaternary ammonium chitosan. Carbohydr Res 346(15):2445–2450

    Article  Google Scholar 

  33. Xu J, Yao P, Li X, He F (2008) Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite. Mater Sci Eng B 151(3):210–219

    Article  Google Scholar 

  34. Li X, Yu Y, Meng Y (2013) Novel quaternized poly(arylene ether sulfone)/Nano-ZrO(2) composite anion exchange membranes for alkaline fuel cells. ACS Appl Mater Interfaces 5(4):1414–1422

    Article  Google Scholar 

  35. Ai W, Liu J-Q, Du Z-Z, Liu X-X, Shang J-Z, Yi M-D, Xie L-H, Zhang J-J, Lin H-F, Yu T (2013) One-pot, aqueous-phase synthesis of graphene oxide functionalized with heterocyclic groups to give increased solubility in organic solvents. RSC Adv 3(1):45–49

    Article  Google Scholar 

  36. Gao Z, Yang W, Wang J, Yan H, Yao Y, Ma J, Wang B, Zhang M, Liu L (2013) Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochim Acta 91:185–194

    Article  Google Scholar 

  37. Bae S-Y, Jeon I-Y, Yang J, Park N, Shin HS, Park S, Ruoff RS, Dai L, Baek J-B (2011) Large-area graphene films by simple solution casting of edge-selectively functionalized graphite. ACS Nano 5(6):4974–4980

    Article  Google Scholar 

  38. Bhadra S, Kim NH, Lee JH (2010) Synthesis of water soluble sulfonated polyaniline and determination of crystal structure. J Appl Polym Sci 117(4):2025–2035

    Article  Google Scholar 

  39. Li X, Yu Y, Meng Y (2013) Novel quaternized poly (arylene ether sulfone)/nano-ZrO2 composite anion exchange membranes for alkaline fuel cells. ACS Appl Mater Interfaces 5(4):1414–1422

    Article  Google Scholar 

  40. Nguyen VH, Tang L, Shim J-J (2013) Electrochemical property of graphene oxide/polyaniline composite prepared by in situ interfacial polymerization. Colloid Polym Sci 291(9):2237–2243

    Article  Google Scholar 

  41. Gedela VR, Srikanth VVSS (2014) Electrochemically active polyaniline nanofibers (PANi NFs) coated graphene nanosheets/PANi NFs composite coated on different flexible substrates. Synth Met 193:71–76

    Article  Google Scholar 

  42. Chen Y, Lu S, Wu X, Liu J (2015) Flexible carbon nanotubes-graphene/sulfur composite film: free-standing cathode for high-performance lithium/sulfur batteries. J Phys Chem C 119(19):10288–10294

    Article  Google Scholar 

  43. Zhao HB, Yang J, Lin TT, Lu QF, Chen G (2015) Nanocomposites of sulfonic polyaniline nanoarrays on graphene nanosheets with an improved supercapacitor performance. Chemistry 21(2):682–690

    Article  Google Scholar 

  44. Luo Y, Kong D, Jia Y, Luo J, Lu Y, Zhang D, Qiu K, Li CM, Yu T (2013) Self-assembled graphene@ PANI nanoworm composites with enhanced supercapacitor performance. Rsc Adv 3(17):5851–5859

    Article  Google Scholar 

  45. Ensafi AA, Ahmadi N, Rezaei B (2015) Electrochemical preparation of CuBi2O4 nanoparticles on nanoporous stainless steel as a binder-free supercapacitor electrode. J Alloy Compd 652:39–47

    Article  Google Scholar 

  46. Sun H, She P, Xu K, Shang Y, Yin S, Liu Z (2015) A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synth Met 209:68–73

    Article  Google Scholar 

  47. Hao J, Liao Y, Zhong Y, Shu D, He C, Guo S, Huang Y, Zhong J, Hu L (2015) Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications. Carbon 94:879–887

    Article  Google Scholar 

  48. Zhang X-Y, Han L-Q, Sun S, Wang C-Y, Chen M-M (2015) MnO2/C composite electrodes free of conductive enhancer for supercapacitors. J Alloy Compd 653:539–545

    Article  Google Scholar 

  49. Ghasemi S, Ojani R, Ausi S (2014) Bipotential deposition of nickel–cobalt hexacyanoferrate nanostructure on graphene coated stainless steel for supercapacitors. Int J Hydrogen Energy 39(27):14918–14926

    Article  Google Scholar 

  50. Liu H, Zhang W, Song H, Chen X, Zhou J, Ma Z (2014) Tremella-like graphene/polyaniline spherical electrode material for supercapacitors. Electrochim Acta 146:511–517

    Article  Google Scholar 

  51. Wang S, Ma L, Gan M, Fu S, Dai W, Zhou T, Sun X, Wang H, Wang H (2015) Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J Power Sources 299:347–355

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial financial support from the Research Affairs Division Isfahan University of Technology (IUT), Isfahan. Further partial financial support of Iran Nanotechnology Initiative Council (INIC), National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Chemistry (IUT) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shadpour Mallakpour or Amir Abdolmaleki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Abdolmaleki, A., Mahmoudian, M. et al. Synergetic effect of synthesized sulfonated polyaniline/quaternized graphene and its application as a high-performance supercapacitor electrode. J Mater Sci 52, 9683–9695 (2017). https://doi.org/10.1007/s10853-017-1118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1118-2

Keywords

Navigation