Skip to main content
Log in

A new insight into PAM/graphene-based adsorption of water-soluble aromatic pollutants

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene materials have been extensively verified as a good adsorbent for tackling wastewater containing various aromatic pollutants; however, little attention has been paid to understanding the graphene-based adsorption mechanism. Here, a systematic work is performed to prepare a series of graphene oxide (GO)-incorporated polyacrylamide hydrogels, with a three-dimensional (3D) monolithic structure, followed by in situ conversion of GO to reduced graphene oxide. Such a method not only enables the prevention of irreversible aggregation of graphene sheets during the in situ reduction, but also facilitates the clarification of the relationship between the structure and adsorption properties of the graphene materials. This work presents two kinds of graphene-based 3D monolithic adsorbents for either selective separation of the cationic aromatic pollutant from anionic one or uptake both of them for the total purification purpose. More importantly, we effectively unravel that the sp2-conjugated carbon network of the graphene materials plays a pivotal role in purifying the aromatic organic pollutants through π–π stacking interactions that outstrip electrostatic attraction interactions. Therefore, the present work is expected to provide an impetus toward exploration of high-performance graphene-based materials for various applications, especially environmental remediation, on the basis of effectively impeding self-aggregation of graphene sheets and judiciously modulating their intrinsic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 1
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Huang Z-H, Zheng X, Lv W, Wang M, Yang Q-H, Kang F (2011) Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558. doi:10.1021/la200606r

    Article  Google Scholar 

  2. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132. doi:10.1021/cr900070d

    Article  Google Scholar 

  3. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228. doi:10.1039/b917103g

    Article  Google Scholar 

  4. Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644. doi:10.1039/c0cs00079e

    Article  Google Scholar 

  5. Hu H, Xin JH, Hu H, Wang X, Kong Y (2015) Metal-free graphene-based catalyst—Insight into the catalytic activity: a short review. Appl Catal A Gen 492:1. doi:10.1016/j.apcata.2014.11.041

    Article  Google Scholar 

  6. Hu H, Xin JH, Hu H, Wang X, Miao D, Liu Y (2015) Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review. J Mater Chem A 3:11157. doi:10.1039/c5ta00753d

    Article  Google Scholar 

  7. Hu H, Wang X, Lee KI, Ma K, Hu H, Xin JH (2016) Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite. Sci Rep 6:31815. doi:10.1038/srep31815

    Article  Google Scholar 

  8. Ciriminna R, Zhang N, Yang M-Q, Meneguzzo F, Xu Y-J, Pagliaro M (2015) Commercialization of graphene-based technologies: a critical insight. Chem Commun 51:7090. doi:10.1039/c5cc01411e

    Article  Google Scholar 

  9. Hu H, Xin J, Hu H, Wang X, Lu X (2014) Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: label-free selective detection of tetrahydrofuran. Molecules 19:7459. doi:10.3390/molecules19067459

    Article  Google Scholar 

  10. Hu H, Allan CCK, Li J et al (2014) Multifunctional organically modified graphene with super-hydrophobicity. Nano Res 7:418. doi:10.1007/s12274-014-0408-0

    Article  Google Scholar 

  11. Wu Z-S, Ren W, Wen L et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187. doi:10.1021/nn100740x

    Article  Google Scholar 

  12. Soo LT, Loh KS, Mohamad AB, Daud WRW, Wong WY (2015) An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells. Appl Catal A Gen 497:198. doi:10.1016/j.apcata.2015.03.008

    Article  Google Scholar 

  13. Qiu J, Wang S (2011) Enhancing polymer performance through graphene sheets. J Appl Polym Sci 119:3670. doi:10.1002/app.33068

    Article  Google Scholar 

  14. Gao E, Wang W, Shang M, Xu J (2011) Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6composite. Phys Chem Chem Phys 13:2887. doi:10.1039/c0cp01749c

    Article  Google Scholar 

  15. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73. doi:10.1038/ncomms1067

    Article  Google Scholar 

  16. An X, Yu JC, Wang Y, Hu Y, Yu X, Zhang G (2012) WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J Mater Chem 22:8525. doi:10.1039/c2jm16709c

    Article  Google Scholar 

  17. Lin TW, Dai CS, Hung KC (2014) High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Sci Rep 4:7274. doi:10.1038/srep07274

    Article  Google Scholar 

  18. Zhu J, Wei S, Gu H et al (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46:977. doi:10.1021/es2014133

    Article  Google Scholar 

  19. Yang S-T, Chen S, Chang Y, Cao A, Liu Y, Wang H (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359:24. doi:10.1016/j.jcis.2011.02.064

    Article  Google Scholar 

  20. Han Z, Tang Z, Shen S, Zhao B, Zheng G, Yang J (2014) Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+. Sci Rep. doi:10.1038/srep05025

    Google Scholar 

  21. Xue Z, Zhao S, Zhao Z, Li P, Gao J (2016) Thermodynamics of dye adsorption on electrochemically exfoliated graphene. J Mater Sci 51:4928. doi:10.1007/s10853-016-9798-6

    Article  Google Scholar 

  22. Zhang L, Li X, Wang M et al (2016) Highly flexible and porous nanoparticle-loaded films for dye removal by graphene oxide–fungus interaction. ACS Appl Mater Interfaces 8:34638. doi:10.1021/acsami.6b10920

    Article  Google Scholar 

  23. Wan Q, Liu M, Xie Y et al (2016) Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application. J Mater Sci 52:504. doi:10.1007/s10853-016-0349-y

    Article  Google Scholar 

  24. Zhang J, Xiao H, Yang Y (2014) Preparation of hemicellulose-containing latex and its application as absorbent toward dyes. J Mater Sci 50:1673. doi:10.1007/s10853-014-8728-8

    Article  Google Scholar 

  25. Duru İ, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51:6097. doi:10.1007/s10853-016-9913-8

    Article  Google Scholar 

  26. Hong J-Y, Sohn E-H, Park S, Park HS (2015) Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel. Chem Eng J 269:229. doi:10.1016/j.cej.2015.01.066

    Article  Google Scholar 

  27. Dong X, Chen J, Ma Y et al (2012) Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem Commun 48:10660. doi:10.1039/c2cc35844a

    Article  Google Scholar 

  28. Gao Y, Li Y, Zhang L et al (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368:540. doi:10.1016/j.jcis.2011.11.015

    Article  Google Scholar 

  29. Shen Y, Fang Q, Chen B (2015) Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ Sci Technol 49:67. doi:10.1021/es504421y

    Article  Google Scholar 

  30. Wang X, Hu H, Yang Z, Kong Y, Fei B, Xin JH (2015) Visible light-active sub-5 nm anatase TiO2 for photocatalytic organic pollutant degradation in water and air, and for bacterial disinfection. Catal Commun 72:81. doi:10.1016/j.catcom.2015.09.014

    Article  Google Scholar 

  31. Wang X, Hu H, Wang W et al (2016) Antibacterial modification of an injectable, biodegradable, non-cytotoxic block copolymer-based physical gel with body temperature-stimulated sol-gel transition and controlled drug release. Colloids Surf B 143:342. doi:10.1016/j.colsurfb.2016.02.008

    Article  Google Scholar 

  32. Barhoum A, Melcher J, Van Assche G et al (2016) Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. J Mater Sci 52:2746. doi:10.1007/s10853-016-0567-3

    Article  Google Scholar 

  33. Kim K-J, Park J-W (2016) Stability and reusability of amine-functionalized magnetic-cored dendrimer for heavy metal adsorption. J Mater Sci 52:843. doi:10.1007/s10853-016-0380-z

    Article  Google Scholar 

  34. Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35. doi:10.1016/j.cis.2013.12.005

    Article  Google Scholar 

  35. Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5:425. doi:10.1021/am302500v

    Article  Google Scholar 

  36. Fan L, Luo C, Sun M, Li X, Lu F, Qiu H (2012) Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour Technol 114:703. doi:10.1016/j.biortech.2012.02.067

    Article  Google Scholar 

  37. Gul K, Sohni S, Waqar M, Ahmad F, Norulaini NAN, MO AK (2016) Functionalization of magnetic chitosan with graphene oxide for removal of cationic and anionic dyes from aqueous solution. Carbohydr Polym 152:520. doi:10.1016/j.carbpol.2016.06.045

    Article  Google Scholar 

  38. Cheng C, Deng J, Lei B et al (2013) Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. J Hazard Mater 263:467. doi:10.1016/j.jhazmat.2013.09.065

    Article  Google Scholar 

  39. Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550. doi:10.1007/s12274-011-0111-3

    Article  Google Scholar 

  40. Zhang L, Wang T, Wang H, Meng Y, Yu W, Chai L (2013) Graphene@poly(m-phenylenediamine) hydrogel fabricated by a facile post-synthesis assembly strategy. Chem Commun 49:9974. doi:10.1039/c3cc45261a

    Article  Google Scholar 

  41. Hu H, Xin JH, Hu H (2014) PAM/graphene/Ag ternary hydrogel: synthesis, characterization and catalytic application. J Mater Chem A 2:11319. doi:10.1039/c4ta01620c

    Article  Google Scholar 

  42. Hu H-W, Xin JH, Hu H (2013) Highly efficient graphene-based ternary composite catalyst with polydopamine layer and copper nanoparticles. ChemPlusChem 78:1483. doi:10.1002/cplu.201300124

    Article  Google Scholar 

  43. Hu H, Xin JH, Hu H, Chan A, He L (2013) Glutaraldehyde–chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films. Carbohydr Polym 91:305. doi:10.1016/j.carbpol.2012.08.038

    Article  Google Scholar 

  44. Huang Y, Zhang M, Ruan W (2014) High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties. J Mater Chem A 2:10508. doi:10.1039/c4ta01464b

    Article  Google Scholar 

  45. Hu H, Wang X, Miao D et al (2015) A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol. Chem Commun 51:16699. doi:10.1039/c5cc05826k

    Article  Google Scholar 

  46. Hu H, Xin JH, Hu H, Wang X (2015) Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res 8:3992. doi:10.1007/s12274-015-0902-z

    Article  Google Scholar 

  47. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1:7433. doi:10.1039/c3ta10639j

    Article  Google Scholar 

  48. Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160. doi:10.1039/c2jm32541a

    Article  Google Scholar 

  49. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569. doi:10.1038/nmat3064

    Article  Google Scholar 

  50. Xiao J, Lv W, Xie Z, Tan Y, Song Y, Zheng Q (2016) Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions. J Mater Chem A 4:12126. doi:10.1039/c6ta04119a

    Article  Google Scholar 

  51. Ghorai S, Sarkar A, Raoufi M, Panda AB, Schonherr H, Pal S (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766. doi:10.1021/am4055657

    Article  Google Scholar 

  52. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101. doi:10.1038/nnano.2007.451

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the special funding project of the technical innovation of Foshan city (2014AG10009), the self-innovation promotion project of the universities in Guangdong province (2015KQNCX178), and research center project of engineering technology of Foshan City (2014GA000355).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huawen Hu, Menglei Chang or Dongchu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Chang, M., Zhang, M. et al. A new insight into PAM/graphene-based adsorption of water-soluble aromatic pollutants. J Mater Sci 52, 8650–8664 (2017). https://doi.org/10.1007/s10853-017-1090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1090-x

Keywords

Navigation