Skip to main content

Advertisement

Log in

Facile synthesis of nitrogen-doped porous carbons for CO2 capture and supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nitrogen-doped porous carbons are attracting considerable attention as adsorbents in CO2 uptake area or for supercapacitors. In this work, nitrogen-doped porous carbons with a high surface area are efficiently prepared through a facile approach by using polyvinylpyrrolidone as carbon and nitrogen sources through ZnCl2 activation at 400–700 °C for 4 h under N2 atmosphere. The obtained nitrogen-doped porous carbons exhibit a narrow microporous structure (0.4–1.0 nm), high specific surface area (up to 1040 m2 g−1) and corresponding N content of up to 6.3 wt%. These findings are ascribed to the unique features of high specific surface area and rich N content. Such nitrogen-doped porous carbons show high CO2 capture of 4.0 mmol g−1 (0 °C) and 2.5 mmol g−1 (25 °C), as well as excellent capacitive performance with a specific capacitance of 292 F g−1 (in 2 M KOH) at a current density of 0.5 A g−1 and cycling stability. A symmetrical supercapacitor based on NPCs shows high energy density (23.2 W h kg−1 at 0.5 A g−1) and good cycle stability (96.8% capacitance retention after 5000 cycles) in symmetric two-electrode systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lei Y, Lu J, Luo X, Wu T, Du P, Zhang X (2013) Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Lett 13(9):4182–4189

    Article  Google Scholar 

  2. Stoeckli F, Centeno T (2013) Optimization of the characterization of porous carbons for supercapacitors. J Mater Chem A 1(23):6865–6873

    Article  Google Scholar 

  3. Hao GP, Li WC, Lu AH (2011) Novel porous solids for carbon dioxide capture. J Electroanal Chem 21(18):6447–6451

    Google Scholar 

  4. Jiang L, Yan J, Xue R, Hao L, Jiang L, Sun G (2014) Hierarchically porous carbons with partially graphitized structures for high rate supercapacitors. J Mater Sci 49(1):363–370. doi:10.1007/s10853-013-7713-y

    Article  Google Scholar 

  5. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2012) Carbon materials for chemical capacitive energy storage. Cheminform 43(2):4828–4850

    Article  Google Scholar 

  6. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2821–2828

    Article  Google Scholar 

  7. Kwon T, Nishihara H, Itoi H, Yang QH, Kyotani T (2009) Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. Langmuir 25(19):11961–11968

    Article  Google Scholar 

  8. Denisa HJ, Masaya K, Soshi S, Hiroaki H, Zhu ZH, Lu GQ (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19(11):1800–1809

    Article  Google Scholar 

  9. Wang Y, Wang X, Antonietti M (2012) ChemInform abstract: polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51(1):68–89

    Article  Google Scholar 

  10. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5(5):6717–6731

    Article  Google Scholar 

  11. Xu B, Zheng D, Jia M, Cao G, Yang Y (2012) Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim Acta 98:176–182

    Article  Google Scholar 

  12. Wang Z, Sun L, Xu F, Zhou H, Peng X, Sun D (2016) Nitrogen-doped porous carbons with high performance for hydrogen storage. Int J Hydrog Energy 41(20):8489–8497

    Article  Google Scholar 

  13. Wang X, Liu CG, Neff D, Fulvio PF, Mayes RT, Zhamu A (2013) Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J Mater Chem A 1(27):7920–7926

    Article  Google Scholar 

  14. Pietrzak R, Helena Wachowska A, Nowicki P (2006) Preparation of nitrogen-enriched activated carbons from brown coal. Energy Fuels 20(3):1275–1280

    Article  Google Scholar 

  15. Jurewicz K, Pietrzak R, Nowicki P, Wachowska H (2008) Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea. Electrochim Acta 53(16):5469–5475

    Article  Google Scholar 

  16. Kim ND, Kim W, Ji BJ, Oh S, Kim P, Kim Y (2008) Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. J Power Sources 180(1):671–675

    Article  Google Scholar 

  17. Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4(3):717–724

    Article  Google Scholar 

  18. Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68(3):185–194

    Article  Google Scholar 

  19. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22(45):5202–5206

    Article  Google Scholar 

  20. Gao S, Geng K, Liu H, Wei X, Zhang M, Wang P (2015) Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ Sci 8(1):221–229

    Article  Google Scholar 

  21. Ma G, Yang Q, Sun K, Peng H, Ran F, Zhao X (2015) Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol 197:137–142

    Article  Google Scholar 

  22. Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun. doi:10.1038/ncomms6261

    Google Scholar 

  23. Zhu Z, Wang S, Du J, Jin Q, Zhang T, Cheng F (2014) Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett 14(1):153–157

    Article  Google Scholar 

  24. Zhao L, Hu YS, Li H, Wang Z, Chen L (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23(11):1385–1388

    Article  Google Scholar 

  25. Ewert JK, Weingarth D, Denner C, Friedrich M, Zeiger M, Schreiber A (2015) Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids. J Mater Chem A 3(37):18906–18912

    Article  Google Scholar 

  26. Górka J, Jaroniec M (2011) Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. Carbon 49(1):154–160

    Article  Google Scholar 

  27. Sui ZY, Meng QH, Li JT, Zhu JH, Cui Y, Han BH (2014) High surface area porous carbons produced by steam activation of graphene aerogels. J Mater Chem A 2(25):9891–9898

    Article  Google Scholar 

  28. Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329(5999):1637–1639

    Article  Google Scholar 

  29. Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41(2):267–275

    Article  Google Scholar 

  30. Luo W, Wang B, Heron CG, Allen MJ, Morre J, Maier CS (2014) Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett 14(4):2225–2229

    Article  Google Scholar 

  31. Liang HW, Wei W, Wu ZS, Feng X, Mullen K (2013) Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J Am Chem Soc 135(43):16002–16005

    Article  Google Scholar 

  32. Hulicova D, Yamashita J, Soneda Y, Hiroaki Hatori A, Kodama M (2005) Supercapacitors prepared from melamine-based carbon. Chem Mater 17(5):1241–1247

    Article  Google Scholar 

  33. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater 23(18):2322–2328

    Article  Google Scholar 

  34. Long C, Zhuang J, Xiao Y, Zheng M, Hu H, Dong H (2016) Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors. J Power Sources 310:145–153

    Article  Google Scholar 

  35. Guo H, Gao Q (2009) Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sources 186(2):551–556

    Article  Google Scholar 

  36. Zhou J, Zhang Z, Xing W, Yu J, Han G, Si W (2015) Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta 153:68–75

    Article  Google Scholar 

  37. Xu B, Duan H, Chu M, Cao GP, Yang Y (2013) Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J Mater Chem A 1(14):4565–4570

    Article  Google Scholar 

  38. Yang SJ, Antonietti M, Fechler N (2015) Self-assembly of metal phenolic mesocrystals and morphosynthetic transformation toward hierarchically porous carbons. J Am Chem Soc 137(25):8269–8273

    Article  Google Scholar 

  39. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050

    Article  Google Scholar 

  40. Ma X, Cao M, Hu C (2012) Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J Mater Chem A 1(3):913–918

    Article  Google Scholar 

  41. Kaufman JH, Metin S, Saperstein DD (1989) Symmetry breaking in nitrogen-doped amorphous carbon: infrared observation of the Raman-active G and D bands. Phys Rev B: Condens Matter 39(18):13053–13060

    Article  Google Scholar 

  42. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B: Condens Matter 64(7):075414. doi:10.1103/PhysRevB.64.075414

    Article  Google Scholar 

  43. He W, Jiang C, Wang J, Lu L (2014) High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew Chem Int Ed 53(36):9503–9507

    Article  Google Scholar 

  44. Hulicova-Jurcakova D, Seredych M, Gao QL, Bandosz TJ (2009) Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447

    Article  Google Scholar 

  45. Xia Y, Mokaya R, Walker GS, Zhu Y (2011) Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Adv Energ Mater 1(4):678–683

    Article  Google Scholar 

  46. Hao GP, Li WC, Qian D, Lu AH (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22(7):853–857

    Article  Google Scholar 

  47. Presser V, Mcdonough J, Yeon SH, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ Sci 4(8):3059–3066

    Article  Google Scholar 

  48. Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102

    Article  Google Scholar 

  49. Gong J, Lin H, Antonietti M, Yuan J (2016) Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s: hierarchical pore structures for efficient CO2 capture and dye removal. J Mater Chem A 4(19):7313–7321

    Article  Google Scholar 

  50. Zhao YF, Zhao L, Yao KX (2012) Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. J Mater Chem 22(37):19726–19731

    Article  Google Scholar 

  51. Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9(1):102–106

    Article  Google Scholar 

  52. Wei T, Wei X, Gao Y, Li H (2015) Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim Acta 169:186–194

    Article  Google Scholar 

  53. Lee Y-H, Chang K-H, Hu C-C (2013) Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J Power Sources 227(4):300–308

    Article  Google Scholar 

  54. Li S, Xue P, Lai C (2015) Pseudocapacitance of amorphous TiO2@ nitrogen doped graphene composite for high rate lithium storage. Electrochim Acta 180:112–119

    Article  Google Scholar 

  55. Hong X, Hui KS, Zeng Z (2014) Hierarchical nitrogen-doped porous carbon with high surface area derived from endothelium corneum gigeriae galli for high-performance supercapacitor. Electrochim Acta 130(4):464–469

    Article  Google Scholar 

  56. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376

    Article  Google Scholar 

  57. Hulicova D, Masaya Kodama A, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 18(9):2318–2326

    Article  Google Scholar 

  58. Xu B, Hou S, Zhang F, Cao G, Chu M, Yang Y (2013) Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors. J Electroanal Chem 712(2):146–150

    Google Scholar 

  59. Liu W, Wang J, Xie L, Sun Y, Li K (2014) Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl Mater Interfaces 6(17):15583–15596

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Shanghai Leading Academic Discipline Project (Project No. J51503), National Natural Science Foundation of China (Project Nos. 20976105, 51641208 and 21606151), Shanghai excellent technical leaders (Project No. 17XD1424900), Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project No. LM201559), Shanghai Municipal Education Commission boosting project (Project No. 15cxy39), Science and Technology Commission of Shanghai Municipality Project (Project No. 14520503200), Shanghai Municipal Education Commission (Plateau Discipline Construction Program), Shanghai Talent Development Funding (Project No. 201335).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hualin Lin or Sheng Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Qian, W., Fu, N. et al. Facile synthesis of nitrogen-doped porous carbons for CO2 capture and supercapacitors. J Mater Sci 52, 10308–10320 (2017). https://doi.org/10.1007/s10853-017-1087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1087-5

Keywords

Navigation