Skip to main content
Log in

High sinterability nano-Y2O3 powders prepared via decomposition of hydroxyl-carbonate precursors for transparent ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High sinterability nano-Y2O3 powders for transparent ceramics were successfully synthesized via the decomposition of hydroxyl-carbonate precursors from spray coprecipitation. The chemical composition of the precursor was determined as Y(CO3)(OH)·nH2O (n = 1–1.5), and it was evolved into Y2O3 particles with clear facets after calcination with the assistance of sulfate. Two dispersion mechanisms, “absorption” and “intercalation,” were proposed to work together to provide the dispersion effect. Microstructural and optical characterization of powders and as-fabricated transparent ceramics was employed to evaluate the sintering behavior of powders. The nanopowders calcined at 1250 °C had weakly agglomerated morphology with the mean particle size of ~140 nm and exhibited excellent sinterability. The in-line transmittance of Y2O3 ceramic of 1 mm thickness that was vacuum sintered at 1800 °C for 8 h without any sintering additives reached 78.7% at 1064 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ikesue A, Yan LA (2008) Ceramic laser materials. Nat Photonics 5:721–727

    Article  Google Scholar 

  2. Jacobsohn LG, Serivalsatit K, Quarles CA, Ballato J (2015) Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy. J Mater Sci 50:3183–3188. doi:10.1007/s10853-015-8881-8

    Article  Google Scholar 

  3. Chen C, Li XL, Feng Y, Lin H, Yi XZ, Tang YR, Zhang S, Zhou SM (2015) Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics. J Mater Sci 50:2517–2521. doi:10.1007/s10853-014-8810-2

    Article  Google Scholar 

  4. Chen X, Lu T, Wei N, Lu Z, Chen L, Zhang Q, Cheng G, Qi J (2015) Fabrication and photoluminescence properties of Cr: YAG and Yb, Cr: YAG transparent ceramic. Opt Mater 49:330–336

    Article  Google Scholar 

  5. Zhang L, Ben Y, Wu J, Yang H, Wong C, Zhang Q, Chen H (2017) Alumina assisted grain refinement and physical performance enhancement of yttria transparent ceramics by two-step sintering. Mater Sci Eng A 684:466–469

    Article  Google Scholar 

  6. Zhang L, Yang H, Qiao X, Zhou T, Wang Z, Zhang J, Tang D, Shen D, Zhang Q (2015) Systematic optimization of spray drying for YAG transparent ceramics. J Eur Ceram Soc 35:2391–2401

    Article  Google Scholar 

  7. Xiong Y, Fu ZY, Wang YC, Quan F (2006) Fabrication of transparent AIN ceramics. J Mater Sci 41:2537–2539. doi:10.1007/s10853-006-5314-8

    Article  Google Scholar 

  8. Zhang XR, Fan GF, Wang XH, Lei W, Fei L, Lu WZ (2016) Effects of sintering parameters and Nd doping on the microwave dielectric properties of Y2O3 ceramics. Ceram Int 42:7962–7967

    Article  Google Scholar 

  9. Wang ZY, Zhang L, Yang H, Zhang J, Wang LX, Zhang QT (2016) High optical quality Y2O3 transparent ceramics with fine grain size fabricated by low temperature air pre-sintering and post-HIP treatment. Ceram Int 42:4238–4245

    Article  Google Scholar 

  10. Frage N, Cohen S, Meir S, Kalabukhov S, Dariel MP (2007) Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel. J Mater Sci 42:3273–3275. doi:10.1007/s10853-007-1672-0

    Article  Google Scholar 

  11. Zhang XR, Lu WZ, Fan GF, Wang XH (2016) Fabrication of well-dispersed Y2O3 nano-powders by poly(acrylic acid) low-temperature combustion. Adv Powder Technol 27:295–298

    Article  Google Scholar 

  12. Yavetskiy RP, Kosyanov DY, Baumer VN, Doroshenko AG, Fedorov AI, Matveevskaya NA, Tolmachev AV, Vovk OM (2014) Low-agglomerated yttria nanopowders via decomposition of sulfate-doped precursor with transient morphology. J Rare Earth 32:320–325

    Article  Google Scholar 

  13. Zhang L, Ben Y, Chen H, Tang D, Fu X, Sun R, Song B, Wong C (2017) Low temperature-sintering and microstructure of highly transparent yttria ceramics. J Alloys Compd 695:2580–2586

    Article  Google Scholar 

  14. Huang Z, Sun X, Xiu Z, Chen S, Tsai CT (2004) Precipitation synthesis and sintering of yttria nanopowders. Mater Lett 58:2137–2142

    Article  Google Scholar 

  15. Wang J, Zhang J, Ning KJ, Luo DW, Yang H, Yin DL, Tang DY, Kong LB (2016) Densification of yttria transparent ceramics: the utilization of activated sintering. J Am Ceram Soc 99:1671–1675

    Article  Google Scholar 

  16. Shan ZF, Chen DQ, Yu YL, Huang P, Lin H, Wang YS (2010) Luminescence in rare earth-doped transparent glass ceramics containing GdF3 nanocrystals for lighting applications. J Mater Sci 45:2775–2779. doi:10.1007/s10853-010-4266-1

    Article  Google Scholar 

  17. Wang ZY, Zhang L, Yang H, Zhang J, Wang LX, Zhang QT (2016) Effect of gamma-Al2O3 additives on the microstructure of Y2O3 ceramics. J Mater Sci Mater Electron 27:3384–3389

    Article  Google Scholar 

  18. Guo Y, Wang D, Wu X, Wang Q, He Y (2016) Novel fabrication, microstructure and upconversion photoluminescence properties of Tm3+, Yb3+ co-doped Y2O3 translucent ceramics. J Alloys Compd 688:816–819

    Article  Google Scholar 

  19. Xu SQ, Li J, Li CY, Pan YB, Guo JK (2015) Infrared-transparent Y2O3–MgO nanocomposites fabricated by the glucose sol-gel combustion and hot-pressing technique. J Am Ceram Soc 98:2796–2802

    Article  Google Scholar 

  20. Tanner PA, Fu L (2009) Morphology of Y2O3: Eu3+ prepared by hydrothermal synthesis. Chem Phys Lett 470:75–79

    Article  Google Scholar 

  21. Kabir M, Ghahari M, Afarani MS (2014) Co-precipitation synthesis of nano Y2 O3: Eu3+ with different morphologies and its photoluminescence properties. Ceram Int 40:10877–10885

    Article  Google Scholar 

  22. Kumar D, Sharma M, Pandey OP (2014) Effect of co-doping metal ions (Li+, Na+ and K+) on the structural and photoluminescent properties of nano-sized Y2O3: Eu3+ synthesized by co-precipitation method. Opt Mater 36:1131–1138

    Article  Google Scholar 

  23. Liu Y, Qin X, Xin H, Song C (2013) Synthesis of nanostructured Nd: Y2O3 powders by carbonate-precipitation process for Nd: YAG ceramics. J Eur Ceram Soc 33:2625–2631

    Article  Google Scholar 

  24. Ragulya AV, Vasyl’Kiv OO, Skorokhod VV (1997) Synthesis and sintering of nanocrystalline barium titanate powder under nonisothermal conditions. I. Control of dispersity of barium titanate during its synthesis from barium titanyl oxalate. Powder Metall Met Ceram 36:170–175

    Article  Google Scholar 

  25. Tokariev O, Steinbrech RW, Schnetter L, Malzbender J (2012) Micro- and macro-mechanical testing of transparent MgAl2O4 spinel. J Mater Sci 47:4821–4826. doi:10.1007/s10853-012-6333-2

    Article  Google Scholar 

  26. Hajizadeh OM, Razavi RS, Barekat M, Naderi M, Malekzadeh S, Rezazadeh M (2016) Synthesis and characterization of Y2O3 nanoparticles by sol–gel process for transparent ceramics applications. J Solgel Sci Technol 78:682–691

    Article  Google Scholar 

  27. Li W, Kou HM, Chen M, Shi Y, Feng XQ, Pan YB, Guo JK (2014) Fabrication and characterization of grain-oriented cerium fluoride ceramics from a slip-casting process in a magnetic field. J Mater Sci 49:5030–5034. doi:10.1007/s10853-014-8207-2

    Article  Google Scholar 

  28. Huang Z, Guo W, Fei BJ, Li JT, Cao YG (2013) Influence of sulphate on synthesis of Nd: Y2O3 powders via coprecipitation route and fabrication of transparent ceramics. Mater Res Innov 17:73–79

    Article  Google Scholar 

  29. Liu B, Li J, Yavetskiy R, Ivanov M, Zeng Y, Xie T, Kou H, Zhuo S, Pan Y, Guo J (2015) Fabrication of YAG transparent ceramics using carbonate precipitated yttria powder. J Eur Ceram Soc 35:2379–2390

    Article  Google Scholar 

  30. Caro P, Sawyer J, Evning L (1972) The infrared spectra of rare earth carbonates. Spectrochim Acta A 28:1167–1173

    Article  Google Scholar 

  31. Li J, Li JP, Chen Q, Wu WJ, Xiao DQ, Zhu JG (2012) Effect of ammonium sulfate on the monodispersed Y3Al5O12 nanopowders synthesized by co-precipitant method. Powder Technol 218:46–50

    Article  Google Scholar 

  32. He J, Li X, Liu S, Zhu Q, Li JG, Sun X (2015) Effects of pre-treatment of starting powder with sulfuric acid on the fabrication of yttria transparent ceramics. J Eur Ceram Soc 35:2369–2377

    Article  Google Scholar 

  33. Li SS, Liu BL, Li J, Zhu XW, Liu WB, Pan YB, Guo JK (2016) Synthesis of yttria nano-powders by the precipitation method: the influence of ammonium hydrogen carbonate to metal ions molar ratio and ammonium sulfate addition. J Alloys Compd 678:258–266

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the generous financial support from the National Natural Science Foundation of China (51402133, 51202111, 11274144), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Guangdong Provincial Key Laboratory (2014B030301014), Research and Innovation Program for College Graduates of Jiangsu Province (KYZZ16_0231), and Special Project for Technology Innovation of Xuzhou City (KC16GZ014, KC16HQ236, KC16HQ237).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farida A. Selim or Hao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, Z., Zhen, F. et al. High sinterability nano-Y2O3 powders prepared via decomposition of hydroxyl-carbonate precursors for transparent ceramics. J Mater Sci 52, 8556–8567 (2017). https://doi.org/10.1007/s10853-017-1071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1071-0

Keywords

Navigation